Как построить касательную к параболе
Парабола
Парабола, её форма, фокус и директриса.
Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
y^<2>=2px\label
$$
при условии \(p > 0\).
Из уравнения \eqref
Форма параболы известна из курса средней школы, где она встречается в качестве графика функции \(y=ax^<2>\). Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством \(2p=a^<-1>\).
Фокусом параболы называется точка \(F\) с координатами \((p/2, 0)\) в канонической системе координат.
Директрисой параболы называется прямая с уравнением \(x=-p/2\) в канонической системе координат (\(PQ\) на рис. 8.11).
Рис. 8.11. Парабола.
Свойства параболы.
Расстояние от точки \(M(x, y)\), лежащей на параболе, до фокуса равно
$$
r=x+\frac
<2>.\label
$$
Вычислим квадрат расстояния от точки \(M(x, y)\) до фокуса по координатам этих точек: \(r^<2>=(x-p/2)^<2>+y^<2>\) и подставим сюда \(y^<2>\) из канонического уравнения параболы. Мы получаем
$$
r^<2>=\left(x-\frac
<2>\right)^<2>+2px=\left(x+\frac
<2>\right)^<2>.\nonumber
$$
Отсюда в силу \(x \geq 0\) следует равенство \eqref
Заметим, что расстояние от точки \(M\) до директрисы также равно
$$
d=x+\frac
<2>.\nonumber
$$
Следовательно, мы можем сделать следующий вывод.
Для того чтобы точка \(M\) лежала на параболе, необходимо и достаточно, чтобы она была одинаково удалена от фокуса и от директрисы этой параболы.
Докажем достаточность. Пусть точка \(M(x, y)\) одинаково удалена от фокуса и от директрисы параболы:
$$
\sqrt<\left(x-\frac
<2>\right)^<2>+y^<2>>=x+\frac
<2>.\nonumber
$$
Возводя это уравнение в квадрат и приводя в нем подобные члены, мы получаем из него уравнение параболы \eqref
Параболе приписывается эксцентриситет \(\varepsilon=1\). В силу этого соглашения формула
$$
\frac
$$
верна и для эллипса, и для гиперболы, и для параболы.
Уравнение касательной к параболе.
Выведем уравнение касательной к параболе в точке \(M_<0>(x_<0>, y_<0>)\), лежащей на ней. Пусть \(y_ <0>\neq 0\). Через точку \(M_<0>\) проходит график функции \(y=f(x)\), целиком лежащий на параболе. (Это \(y=\sqrt<2px>\) или же \(y=-\sqrt<2px>\), смотря по знаку \(y_<0>\).) Для функции \(f(x)\) выполнено тождество \((f(x))^<2>=2px\), дифференцируя которое имеем \(2f(x)f'(x)=2p\). Подставляя \(x=x_<0>\) и \(f(x_<0>)=y_<0>\), находим \(f'(x_<0>)=p/y_<0>\) Теперь мы можем написать уравнение касательной к параболе
$$
y-y_<0>=\frac
$$
Упростим его. Для этого раскроем скобки и вспомним, что \(y_<0>^<2>=2px_<0>\). Теперь уравнение касательной принимает окончательный вид
$$
yy_<0>=p(x+x_<0>).\label
$$
Заметим, что для вершины параболы, которую мы исключили, положив \(y_ <0>\neq 0\), уравнение \eqref
Касательная к параболе в точке \(M_<0>\) есть биссектриса угла, смежного с углом между отрезком, который соединяет \(M_<0>\) с фокусом, и лучом., выходящим из этой точки в направлении оси параболы (рис. 8.12).
Рассмотрим касательную в точке \(M_<0>(x_<0>, y_<0>)\). Из уравнения \eqref
$$
(\overrightarrow
<2>y_<0>+py_<0>=y_<0>(x_<0>+\frac
<2>).\nonumber
$$
Но \(|\overrightarrow
Заметим, что \(|FN|=|FM_<0>|\) (см. рис. 8.12).
Общая касательная к графикам функций. На примере 2х парабол
На примере двух парабол покажем, как составить уравнение общей касательной к графикам функций. Заметим, что общих касательных может быть несколько.
Для решения данной задачи потребуются знания о производной на уровне школьного курса.
В рамках подготовки к профильному ЕГЭ при изучении производной я предлагаю своим ученикам решать, в том числе, и подобные задачи, помимо стандартных 7 и 12 заданий.
Это необходимо для того, чтобы школьники учились применять свои знания при решении задач, а не просто решать стандартные задания по шаблону.
Составим уравнение общих касательных к графикам квадратичных функций (параболам):
Касательная представляет собой прямую. Запишем уравнение касательной в виде уравнения прямой с угловым коэффициентом:
y = kx + b, k – угловой коэффициент.
Обозначим точку, в которой она касается первой параболы, как A (a1, a2), второй параболы – B (b1, b2).
Рассмотрим функцию
1. Вычислим ее производную: y’ = 2(x – 1).
Таким образом, мы выразили координаты точки A через угловой коэффициент касательной:
A (k/2 + 1, k^2/4 + 1).
3. Угловой коэффициент прямой, проходящей через точки A (a1, a2) и B (b1, b2), равен (a2 – b2) / (a1 – b1). Значит
k = (a2 – b2) / (a1 – b1).
Подставим в это уравнение координаты точек A и B и получим уравнение относительно k:
Находим корни: k = 0 и k = 4.
5. Составляем уравнение касательной (прямой) по двум точкам. (Данная тема разобрана в предыдущем посте)
(x – a1) / (b1 – a1) = (y – a2) / (b2 – a2)
(x – 3) / (1 – 3) = (y – 5) / (-3 – 5)
(x – 3) / (–2) = (y – 5) / (-8) – каноническое уравнение прямой
Выражаем y:
y = 4x – 7 – уравнение прямой с угловым коэффициентом.
Аналогично находим уравнение еще одной касательной (при k = 0):
y = 1.
✔ Для того, чтобы задать вопрос или записаться на консультацию, пишите в whatsapp 8 968 814 30 80.
Касательная к графику функции в точке. Уравнение касательной. Геометрический смысл производной
Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.
Определения и понятия
На рисунке направление о х обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.
Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника А В С можно найти по отношению противолежащего катета к прилежащему.
Получаем формулу для нахождения секущей вида:
По определению видно, что прямая и ее секущая в данном случае совпадают.
Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у = 0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.
Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.
Геометрический смысл производной функции в точке
Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.
Уравнение касательной прямой
Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x 0 при пересечении.
Решение
Значение f ’ ( x ) в точке касания является угловым коэффициентом касательной, который равняется тангенсу наклона.
Тогда k x = t g α x = y ‘ ( x 0 ) = 3 3
Отсюда следует, что α x = a r c t g 3 3 = π 6
Ответ: уравнение касательной приобретает вид
Для наглядности приведем пример в графической иллюстрации.
Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает в увеличенном виде.
Решение
По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.
Перейдем к нахождению производной
Для наглядности изобразим графически.
Решение
Необходимо продифференцировать функцию. Имеем, что
Вычисляем соответствующие значения функции
Рассмотрим графическое изображение решения.
Черная линия – график функции, красные точки – точки касания.
Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что
Другое уравнение имеет два действительных корня, тогда
Перейдем к нахождению значений функции. Получаем, что
Возможно существование бесконечного количества касательных для заданных функций.
Решение
Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.
Найдены х точек касания. Теперь необходимо перейти к поиску значений у :
Ответ: необходимы уравнения запишутся как
Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.
Касательная к окружности, эллипсу, гиперболе, параболе
Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.
Касательная к окружности
Данное равенство может быть записано как объединение двух функций:
Первая функция располагается вверху, а вторая внизу, как показано на рисунке.
Касательная к эллипсу
Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что
Решение
Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2 ; 5 3 2 + 5 будет иметь вид
Графически касательные обозначаются так:
Касательная к гиперболе
Гипербола может быть представлена в виде двух объединенных функций вида
Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.
Решение
Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что
Ответ: уравнение касательной можно представить как
Наглядно изображается так:
Касательная к параболе
Графически изобразим как:
Решение
Начинаем решение с представления параболы в качестве двух функций. Получим, что
Значение углового коэффициента равняется значению производной в точке x 0 этой функции и равняется тангенсу угла наклона.
Отсюда определим значение х для точек касания.
Первая функция запишется как
Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150 ° для такой функции не существует.
Вторая функция запишется как
Ответ: уравнение касательной принимает вид
Однако следует разобраться в основных терминах и соотношениях.
Специалисты рекомендуют пользоваться специальным алгоритмом, позволяющим правильно находить точку касания прямой с какой-либо фигурой.
Общие сведения
Касательной называется прямая, имеющая с фигурой или графиком заданной функции одну общую точку. Однако иногда она проходит через 2 точки. В этом случае ее называют секущей. Прямая задается следующим уравнением: y = kx + b. Значение «k» — это угловой коэффициент.
Для решения задач следует разобрать основные понятия, определения, формулы и свойства касательной.
Кроме того, очень важно понять ее геометрический смысл, поскольку без него будет сложно разобраться в более сложных дисциплинах с физико-математическим уклоном.
Определения и понятия
У касательной есть определенный параметр — угол наклона (а).
Его необходимо отсчитывать от оси абсцисс (только положительное направление) к прямой, заданной графиком y = kx + b.
От него зависит ее расположение.
Коэффициент «к» равен значению тангенса угла наклона, т. е. tg(a).
Математики сделали некоторые выводы, которые основываются на значении углового коэффициента:
В первом, втором и третьем случаях коэффициент является положительным, а в последнем — отрицательным. Эти факты следует учитывать при решении задач. Касательная прямая может являться и секущей, т. е. соприкасаться с графиком функции сразу в двух и более точках. Следует отметить, что при параллельности прямой оси ОХ (y = b), она может пересекать функцию бесконечное число раз.
Геометрический смысл
Рисунок 1. Геометрический смысл.
Соотношение, которое было получено выше, называется производной. Если к графику в точке проведена секущая или касательная, то тангенс угла будет равен самой производной заданной функции в точке с координатой х0.
Из этого определения можно сделать вывод о существовании производной. Если значение последней равно 0, то, следовательно, не существует общих точек с заданной фигурой.
Касательные к фигурам и графикам
При решении задач следует обратить внимание на частные случаи. Нужно произвести расчеты уравнения прямой или найти точки соприкосновения с окружностью, эллипсом, гиперболой или параболой. Очень распространенная задача встречается также в механике о ременной передаче.
Частные случаи позволят найти оптимальное решение и метод расчета, поскольку экономия времени является важным элементом при научных исследованиях, написании контрольных работ и сдаче экзаменов. Важный этап — идентификация типа задачи. Касательная к вышеперечисленным фигурам — основной тип заданий, но существуют и более сложные функции.
Например, сложно составить уравнение прямой, которая имеет точки касания с какой-либо сложной функцией.
В некоторых случаях необходимо перед выполнением расчетов ее упростить, т. е. привести подобные слагаемые, раскрыть скобки или воспользоваться другими приемами для упрощения выражения.
Одна и несколько окружностей
Формула окружности с центром в точке О (xc;yc) и радиусом R имеет следующий вид: sqr(х-хc) + sqr(y-yc) = R^2.
Для решения следует выразить значение у, но при этом нужно рассматривать 2 случая:
В случае для двух окружностей всего можно провести до 4 касательных (2 внешних и 2 внутренних). Это зависит от случая расположения фигур. Точкой пересечения внешних считается внешняя гомотетия (подобие), а внутренних — в центре внутреннего подобия. Внешними называются прямые, которые касаются внешних точек круга. Если касательные являются внутренними, то они пересекают линию, соединяющую центры окружностей.
Следует отметить, что внешний и внутренний центры гомотетии лежат на некоторой прямой. Она проходит через центры заданных окружностей. Это был рассмотрен случай, когда одна окружность меньше другой.
Однако при равенстве их диаметров появляются некоторые свойства: внешние касательные параллельны и внешнего центра гомотетии не существует.
Эллипс, гипербола и парабола
Пусть задан эллипс с полуосями a и b.
В зависимости от его значения находятся корни:
Уравнение касательной к графику функции
Статья опубликована при поддержке Гостиничного комплекса «ИТАКА+». Останавливаясь в городе судостроителей Северодвинске, вы не столкнетесь с проблемой поиска временного жилья. Тут, на сайте гостиничного комплекса «ИТАКА+» http://itakaplus.ru, вы сможете легко и быстро снять квартиру в городе, на любой срок, с посуточной оплатой.
На современном этапе развития образования в качестве одной из основных его задач выступает формирование творчески мыслящей личности. Способность же к творчеству у учащихся может быть развита лишь при условии систематического привлечения их к основам исследовательской деятельности. Фундаментом для применения учащимися своих творческих сил, способностей и дарований являются сформированные полноценные знания и умения. В связи с этим проблема формирования системы базовых знаний и умений по каждой теме школьного курса математики имеет немаловажное значение. При этом полноценные умения должны являться дидактической целью не отдельных задач, а тщательно продуманной их системы. В самом широком смысле под системой понимается совокупность взаимосвязанных взаимодействующих элементов, обладающая целостностью и устойчивой структурой.
Рассмотрим методику обучения учащихся составлению уравнения касательной к графику функции. По существу, все задачи на отыскание уравнения касательной сводятся к необходимости отбора из множества (пучка, семейства) прямых тех из них, которые удовлетворяют определенному требованию – являются касательными к графику некоторой функции. При этом множество прямых, из которого осуществляется отбор, может быть задано двумя способами:
а) точкой, лежащей на плоскости xOy (центральный пучок прямых);
б) угловым коэффициентом (параллельный пучок прямых).
В связи с этим при изучении темы «Касательная к графику функции» с целью вычленения элементов системы нами были выделены два типа задач:
1) задачи на касательную, заданную точкой, через которую она проходит;
2) задачи на касательную, заданную ее угловым коэффициентом.
Обучение решению задач на касательную осуществлялось при помощи алгоритма, предложенного А.Г. Мордковичем [2]. Его принципиальное отличие от уже известных заключается в том, что абсцисса точки касания обозначается буквой a (вместо x0), в связи с чем уравнение касательной приобретает вид
(сравните с y = f(x0) + f ‘(x0)(x – x0)). Этот методический прием, на наш взгляд, позволяет учащимся быстрее и легче осознать, где в общем уравнении касательной записаны координаты текущей точки, а где – точки касания.
Алгоритм составления уравнения касательной к графику функции y = f(x)
1. Обозначить буквой a абсциссу точки касания.
2. Найти f(a).
3. Найти f ‘(x) и f ‘(a).
4. Подставить найденные числа a, f(a), f ‘(a) в общее уравнение касательной y = f(a) = f ‘(a)(x – a).
Этот алгоритм может быть составлен на основе самостоятельного выделения учащимися операций и последовательности их выполнения.
Практика показала, что последовательное решение каждой из ключевых задач при помощи алгоритма позволяет формировать умения написания уравнения касательной к графику функции поэтапно, а шаги алгоритма служат опорными пунктами действий. Данный подход соответствует теории поэтапного формирования умственных действий, разработанной П.Я. Гальпериным и Н.Ф. Талызиной [3].
Задача 1. Составьте уравнение касательной к графику функции
в точке M(3; – 2).
Решение. Точка M(3; – 2) является точкой касания, так как
1. a = 3 – абсцисса точки касания.
2. f(3) = – 2.
3. f ‘(x) = x 2 – 4, f ‘(3) = 5.
y = – 2 + 5(x – 3), y = 5x – 17 – уравнение касательной.
Задача 2. Напишите уравнения всех касательных к графику функции y = – x 2 – 4x + 2, проходящих через точку M(– 3; 6).
Решение. Точка M(– 3; 6) не является точкой касания, так как f(– 3) 6 (рис. 2).
1. a – абсцисса точки касания.
2. f(a) = – a 2 – 4a + 2.
3. f ‘(x) = – 2x – 4, f ‘(a) = – 2a – 4.
4. y = – a 2 – 4a + 2 – 2(a + 2)(x – a) – уравнение касательной.
Касательная проходит через точку M(– 3; 6), следовательно, ее координаты удовлетворяют уравнению касательной.
6 = – a 2 – 4a + 2 – 2(a + 2)(– 3 – a),
a 2 + 6a + 8 = 0 ^ a1 = – 4, a2 = – 2.
Если a = – 4, то уравнение касательной имеет вид y = 4x + 18.
Если a = – 2, то уравнение касательной имеет вид y = 6.
Задача 3. Напишите уравнения всех касательных к графику функции y = x 3 – 3x 2 + 3, параллельных прямой y = 9x + 1.
1. a – абсцисса точки касания.
2. f(a) = a 3 – 3a 2 + 3.
3. f ‘(x) = 3x 2 – 6x, f ‘(a) = 3a 2 – 6a.
Но, с другой стороны, f ‘(a) = 9 (условие параллельности). Значит, надо решить уравнение 3a 2 – 6a = 9. Его корни a = – 1, a = 3 (рис. 3).
y = 9x + 8 – уравнение касательной;
y = 9x – 24 – уравнение касательной.
Задача 4. Напишите уравнение касательной к графику функции y = 0,5x 2 – 3x + 1, проходящей под углом 45° к прямой y = 0 (рис. 4).
Решение. Из условия f ‘(a) = tg 45° найдем a: a – 3 = 1 ^ a = 4.
1. a = 4 – абсцисса точки касания.
2. f(4) = 8 – 12 + 1 = – 3.
3. f ‘(4) = 4 – 3 = 1.
4. y = – 3 + 1(x – 4).
y = x – 7 – уравнение касательной.
Несложно показать, что решение любой другой задачи сводится к решению одной или нескольких ключевых задач. Рассмотрим в качестве примера следующие две задачи.
1. Напишите уравнения касательных к параболе y = 2x 2 – 5x – 2, если касательные пересекаются под прямым углом и одна из них касается параболы в точке с абсциссой 3 (рис. 5).
Решение. Поскольку дана абсцисса точки касания, то первая часть решения сводится к ключевой задаче 1.
1. a = 3 – абсцисса точки касания одной из сторон прямого угла.
2. f(3) = 1.
3. f ‘(x) = 4x – 5, f ‘(3) = 7.
4. y = 1 + 7(x – 3), y = 7x – 20 – уравнение первой касательной.
Пусть a – угол наклона первой касательной. Так как касательные перпендикулярны, то – угол наклона второй касательной. Из уравнения y = 7x – 20 первой касательной имеем tg a = 7. Найдем
Это значит, что угловой коэффициент второй касательной равен .
Дальнейшее решение сводится к ключевой задаче 3.
Пусть B(c; f(c)) есть точка касания второй прямой, тогда
1.
– абсцисса второй точки касания.
2.![]()
3.![]()
4.![]()
– уравнение второй касательной.
Примечание. Угловой коэффициент касательной может быть найден проще, если учащимся известно соотношение коэффициентов перпендикулярных прямых k1•k2 = – 1.
2. Напишите уравнения всех общих касательных к графикам функций
Решение. Задача сводится к отысканию абсцисс точек касания общих касательных, то есть к решению ключевой задачи 1 в общем виде, составлению системы уравнений и последующему ее решению (рис. 6).
1. Пусть c – абсцисса точки касания, лежащей на графике функции
![]()
2.![]()
3. f ‘(c) = c.
4.
Так как касательные общие, то
Итак, y = x + 1 и y = – 3x – 3 – общие касательные.
Основная цель рассмотренных задач – подготовить учащихся к самостоятельному распознаванию типа ключевой задачи при решении более сложных задач, требующих определенных исследовательских умений (умения анализировать, сравнивать, обобщать, выдвигать гипотезу и т. д.). К числу таких задач можно отнести любую задачу, в которую ключевая задача входит как составляющая. Рассмотрим в качестве примера задачу (обратную задаче 1) на нахождение функции по семейству ее касательных.
3. При каких b и c прямые y = x и y = – 2x являются касательными к графику функции y = x 2 + bx + c?
Составим и решим систему уравнений
Ответ:
Задачи для самостоятельного решения
1. Напишите уравнения касательных, проведенных к графику функции y = 2x 2 – 4x + 3 в точках пересечения графика с прямой y = x + 3.
Ответ: y = – 4x + 3, y = 6x – 9,5.
2. При каких значениях a касательная, проведенная к графику функции y = x 2 – ax в точке графика с абсциссой x0 = 1, проходит через точку M(2; 3)?
3. При каких значениях p прямая y = px – 5 касается кривой y = 3x 2 – 4x – 2?
4. Найдите все общие точки графика функции y = 3x – x 3 и касательной, проведенной к этому графику через точку P(0; 16).
Ответ: A(2; – 2), B(– 4; 52).
5. Найдите кратчайшее расстояние между параболой y = x 2 + 6x + 10 и прямой
Ответ:
6. На кривой y = x 2 – x + 1 найдите точку, в которой касательная к графику параллельна прямой y – 3x + 1 = 0.
7. Напишите уравнение касательной к графику функции y = x 2 + 2x – | 4x |, которая касается его в двух точках. Сделайте чертеж.
8. Докажите, что прямая y = 2x – 1 не пересекает кривую y = x 4 + 3x 2 + 2x. Найдите расстояние между их ближайшими точками.
Ответ:
9. На параболе y = x 2 взяты две точки с абсциссами x1 = 1, x2 = 3. Через эти точки проведена секущая. В какой точке параболы касательная к ней будет параллельна проведенной секущей? Напишите уравнения секущей и касательной.
Ответ: y = 4x – 3 – уравнение секущей; y = 4x – 4 – уравнение касательной.
10. Найдите угол q между касательными к графику функции y = x 3 – 4x 2 + 3x + 1, проведенными в точках с абсциссами 0 и 1.
11. В каких точках касательная к графику функции образует с осью Ox угол в 135°?
12. В точке A(1; 8) к кривой проведена касательная. Найдите длину отрезка касательной, заключенного между осями координат.
Ответ:
13. Напишите уравнение всех общих касательных к графикам функций y = x 2 – x + 1 и y = 2x 2 – x + 0,5.
Ответ: y = – 3x и y = x.
14. Найдите расстояние между касательными к графику функции параллельными оси абсцисс.
Ответ:
15. Определите, под какими углами парабола y = x 2 + 2x – 8 пересекает ось абсцисс.
Ответ: q 1 = arctg 6, q 2 = arctg (– 6).
16. На графике функции найдите все точки, касательная в каждой из которых к этому графику пересекает положительные полуоси координат, отсекая от них равные отрезки.
17. Прямая y = 2x + 7 и парабола y = x 2 – 1 пересекаются в точках M и N. Найдите точку K пересечения прямых, касающихся параболы в точках M и N.
18. При каких значениях b прямая y = 9x + b является касательной к графику функции y = x 3 – 3x + 15?
19. При каких значениях k прямая y = kx – 10 имеет только одну общую точку с графиком функции y = 2x 2 + 3x – 2? Для найденных значений k определите координаты точки.
20. При каких значениях b касательная, проведенная к графику функции y = bx 3 – 2x 2 – 4 в точке с абсциссой x0 = 2, проходит через точку M(1; 8)?
21. Парабола с вершиной на оси Ox касается прямой, проходящей через точки A(1; 2) и B(2; 4), в точке B. Найдите уравнение параболы.
Ответ:
22. При каком значении коэффициента k парабола y = x 2 + kx + 1 касается оси Ox?
23. Найдите углы между прямой y = x + 2 и кривой y = 2x 2 + 4x – 3.
Ответ:
24. Определите, под какими углами пересекаются графики функций y = 2x 2 + 3x – 3 и y = x 2 + 2x + 3.
Ответ:
25. При каком значении k угол между кривыми y = x 2 + 2x + k и y = x 2 + 4x + 4 будет равен 45°?
26. Найдите все значения x0, при каждом из которых касательные к графикам функции y = 5cos 3x + 2 и y = 3cos 5x в точках в абсциссой x0 параллельны.
Ответ:
27. Под каким углом видна окружность x 2 + y 2 = 16 из точки (8; 0)?
Ответ:
28. Найдите геометрическое место точек, из которых парабола y = x 2 видна под прямым углом?
Ответ: прямая
29. Найдите расстояние между касательными к графику функции образующими с положительным направлением оси Ox угол 45°.
Ответ:
30. Найдите геометрическое место вершин всех парабол вида y = x 2 + ax + b, касающихся прямой y = 4x – 1.
Ответ: прямая y = 4x + 3.
Литература
1. Звавич Л.И., Шляпочник Л.Я., Чинкина М.В. Алгебра и начала анализа: 3600 задач для школьников и поступающих в вузы. – М., Дрофа, 1999.
2. Мордкович А. Семинар четвертый для молодых учителей. Тема «Приложения производной». – М., «Математика», № 21/94.
3. Формирование знаний и умений на основе теории поэтапного усвоения умственных действий. / Под ред. П.Я. Гальперина, Н.Ф. Талызиной. – М., МГУ, 1968.