вирусы не содержащие ни одного постоянного участка кода являются

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются Программистан
Бесплатные программы для вашего компьютера, полезные советы по Windows

советы → Полезные сведения → Понятие и классификация компьютерных вирусов

Понятие и классификация компьютерных вирусов

Компьютерные вирусы являются одной из самых больших угроз для вашего компьютера, если вы работаете в сети Интернет. Для определения понятия «компьютерный вирус» существуют различные формулировки. Будем придерживаться следующей:
вирус – это программный код, встроенный в программу или документ, который проникает на компьютер для несанкционированного уничтожения, блокирования, искажения, копирования данных и сбора информации, или для заражения компьютеров через Интернет. Главная особенность вируса – это способность различными путями распространяться из одного файла в другой на одном компьютере или с одного компьютера на другой без ведома и согласия пользователя компьютера. Часто действия вирусов приводят к значительным нарушениям в работе компьютера или компьютерных сетей.

Вирусы принято классифицировать по следующим признакам:
среда обитания, поражаемая операционная система, особенности алгоритма работы, деструктивные возможности.

По среде обитания, иначе говоря, по поражаемым объектам вирусы делятся на файловые, загрузочные, сетевые вирусы и макровирусы.

Загрузочные вирусы записываются в загрузочный сектор диска и запускаются при запуске операционной системы, становясь ее частью.

Сетевые вирусы, которые ещё называют сетевыми червями, имеют своим основным местом «проживания» и функционирования локальную сеть. Сетевой вирус, попадая на компьютер пользователя, самостоятельно копирует себя и распространяется по другим компьютерам, входящим в сеть. Они используют для своего распространения электронную почту, системы обмена мгновенными сообщениями (например, ICQ), сети обмена данными, а также недостатки в конфигурации сети и ошибки в работе сетевых протоколов.

Макровирусы поражают документы, выполненные в некоторых прикладных программах, имеющих средства для исполнения макрокоманд. К таким документам относятся файлы, созданные с помощью пакета программ Microsoft Office, который поддерживает создание макросов на языке программирования Visual Basic for Application. Весьма полезно перед открытием незнакомого файла, созданного в таких программах, как Word или Excel, удостовериться, что поддержка макросов отключена ( Сервис – Параметры – Безопасность макросов ). Либо, для версии Microsoft Word 2010, в разделе «Безопасность программы» проверьте, включен ли режим защищенного просмотра файлов и предотвращения выполнения данных.

Однако, можно сказать, что современный вирус зачастую можно отнести сразу к нескольким группам вирусов. Такими сочетаниями являются, например, файловые загрузочные вирусы или файловые сетевые черви. Пример последнего: сетевой макро- вирус, который не только заражает документы, созданные в программах Word или Excel, но и рассылает свои копии по электронной почте.

Еще одним классификационным признаком является вид операционной системы, так как любой вирус ориентирован на заражение файлов или выполнение несанкционированных действий в определенной операционной системе.

По алгоритмам работы выделяют резидентные вирусы и вирусы, использующие стелс-алгоритмы или полиморфичность.

Резидентные вирусы при заражении компьютера постоянно остаются в оперативной памяти, перехватывая обращения операционной системы к объектам заражения, чтобы выполнить несанкционированные действия. Такие вирусы являются активными до полного выключения компьютера.

Применение стелс-алгоритмов базируется на перехвате запросов ОС на чтение или запись зараженных объектов. При этом происходит временное лечение этих объектов, либо замена их незараженными участками информации. Это позволяет вирусам скрыть себя в системе.

Также очень сложно обнаружить в системе вирусы, основанные на применении алгоритмов полиморфичности. Такие вирусы не содержат ни одного постоянного участка кода, что достигается за счет шифрования кода вируса и модификации программы-расшифровщика. Как правило, два образца одного и того же вируса не будут иметь ни одного совпадения в коде.

По деструктивным, то есть разрушительным возможностям выделяют опасные и неопасные вирусы.

Опасные вирусы выводят из строя операционную систему, портят или уничтожают информацию, хранящуюся на диске.

Неопасные вирусы практически не влияют на работоспособность компьютера и не понижают эффективность работы операционной системы, кроме увеличения дискового пространства, которое они занимают и уменьшения объёма свободной памяти компьютера.

Разработчики антивирусных программ обычно создают собственные классификации детектируемых вирусов. Например, «Лаборатория Касперского» (www.kaspersky.com) использует классификацию, основанную на разделении вирусов по типу совершаемых ими на компьютере пользователей действий.

Основные типы вредоносных объектов

Основные типы вредоносных объектов: virus, worm (net-worm и email-worm), packer, utility, trojan (trojan-downloader, backdoor и trojan-dropper), adware.

• Среди сетевых вирусов (worm) выделяют вредоносные программы, которые используют для своего распространения электронную почту (email- worm) и сети обмена данными (net-worm).

Упаковщики (packer) различными способами архивируют содержимое файла, в том числе с помощью шифрования, для того, чтобы исключить корректное разархивирование информации.

Трояны (Trojan) – группа вредоносных программ-вирусов, маскирующихся под полезные программы, проникающие на компьютер под видом безвредного программного обеспечения. Как и её прототип из греческой мифологии, программа-троян выглядит не тем, чем является на самом деле. Такая программа несет в себе средства, позволяющие её создателю иметь доступ к системе, в которой она исполняется. Другими словами, основное функциональное назначение троянов – предоставить к пораженному компьютеру свободный доступ через Интернет с удаленного компьютера. В этой группе выделяют программы, предназначенные для скрытого удаленного управления пораженным компьютером (backdoor); программы, предназначенные для несанкционированной установки на компьютер различных вирусов, содержащихся в этой программе (trojan-dropper); программы, предназначенные для несанкционированной загрузки на компьютер новых версий вирусов из сети Интернет (trojan-downloader).

Вредоносные утилиты (utility) разрабатываются для автоматизации создания других вирусов, червей или троянских программ. В большинстве случаев они не представляют угрозы компьютеру, на котором исполняются.

• И, наконец, adware, программы, которые не являются вредоносными, но обладают функциональными возможностями для совершения несанкционированных и часто вредоносных действий.

Многие вирусы не входят ни в один из вышеперечисленных классов. В настоящее время они и составляют самую большую категорию вредоносных программ, предназначенных для несанкционированного нарушения работы компьютера.

Спам и Фишинг

Спамом называют массовую рассылку электронной почты, обычно содержащую навязчивую рекламу, на адреса пользователей, которые не выражали желания ее получать. Спам вреден тем, что нагружает каналы связи и сетевое оборудование провайдеров, что, в свою очередь, увеличивает трафик и снижает пропускную способность передачи полезной информации. Кроме того, спам заставляет пользователя тратить свое время на обработку бесполезной информации. Совет: никогда не отвечайте на спамерское письмо, даже если очень хочется. Ваш ответ будет подтверждением того, что данный почтовый ящик существует в действительности, а подобная информация очень ценится у спамеров. В дальнейшем ваш ящик будет постоянно забит спамом.

Современные антивирусы собирают базу данных о таких угрозах и, при попытке пользователя перейти по фишинговой ссылке, предупреждают его об опасности.

Источник

Вирусы не содержащие ни одного постоянного участка кода являются

Сегодня массовое применение персональных компьютеров, к сожалению, оказалось связанным с появлением самовоспроизводящихся программ-вирусов, препятствующих нормальной работе компьютера, разрушающих файловую структуру дисков и наносящих ущерб хранимой в компьютере информации.

Несмотря на принятые во многих странах законы о борьбе с компьютерными преступлениями и разработку специальных программных средств защиты от вирусов, количество новых программных вирусов постоянно растет. Это требует от пользователя персонального компьютера знаний о природе вирусов, способах заражения вирусами и защиты от них [5].

Программа, внутри которой находится вирус, называется зараженной. С началом работы такой программы вирус получает доступ ко всей операционной системе. Вирус находит и заражает другие программы, а также выполняет какие-либо вредоносные действия. Например, портит файлы или таблицу размещения файлов на диске, занимает оперативную память и т.д. После того, как вирус выполнит свои действия, он передает управление той программе, в которой он находится, и она работает как обычно. Тем самым внешне работа зараженной программы выглядит так же, как и незараженной. Поэтому далеко не сразу пользователь узнаёт о присутствии вируса в машине [1].

К числу наиболее характерных признаков заражения компьютера вирусами относятся следующие:

В настоящее время известно более 50000 программных вирусов, которые классифицируют по следующим признакам:

Любой вирус, независимо от принадлежности к определенным классам, должен иметь три функциональных блока: блок заражения (распространения), блок маскировки и блок выполнения деструктивных действий. Разделение на функциональные блоки означает, что к определенному блоку относятся команды программы вируса, выполняющие одну из трех функций, независимо от места нахождения команд в теле вируса.

После передачи управления вирусу, как правило, выполняются определенные функции блока маскировки. Например, осуществляется расшифровка тела вируса. Затем вирус осуществляет функцию внедрения в незараженную среду обитания. Если вирусом должны выполняться деструктивные воздействия, то они выполняются либо безусловно, либо при выполнении определенных условий.

Завершает работу вируса всегда блок маскировки. При этом выполняются, например, следующие действия: шифрование вируса (если функция шифрования реализована), восстановление старой даты изменения файла, восстановление атрибутов файла, корректировка таблиц ОС и др.

Последней командой вируса выполняется команда перехода на выполнение зараженных файлов или на выполнение программ ОС.

Для удобства работы с известными вирусами используются каталоги вирусов. В каталог помещаются следующие сведения о стандартных свойствах вируса: имя, длина, заражаемые файлы, место внедрения в файл, метод заражения, способ внедрения в ОП для резидентных вирусов, вызываемые эффекты, наличие (отсутствие) деструктивной функции и ошибки. Наличие каталогов позволяет при описании вирусов указывать только особые свойства, опуская стандартные свойства и действия [4].

Знание классификации компьютерных вирусов позволяет оценить степень угрозы, метод борьбы и уровень необходимой защиты ПО от вредоносных воздействий.

Источник

Вирусы не содержащие ни одного постоянного участка кода являются

Вирусы классифицируют по типу генетического материала, способам репликации, строению и расположению структурных белков (капсидов), а также наличию или отсутствию оболочки.

Генетическая структура и способы репликации ДНК-вирусы. Могут быть только двунитевыми и одноните-выми. К. первым относят вирус оспы, герпес-вирусы, аденовирусы, паповавирусы и полиомавирусы. Последние два вируса вызывают развитие доброкачественных (бородавки) и злокачественных (рак шейки матки) опухолей. Вирус гепатита В частично дву- и однонитевой. К однонитевым вирусам относят парвовирусы, вызывающие инфекционную эритему.

Репликация ДНК-вирусов обычно происходит в ядре клеток хозяина и сопровождается продукцией полимераз, воспроизводящих вирусную ДНК. При этом последняя не всегда встраивается в хромосомную ДНК хозяина.

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

РНК-вирусы. Эти вирусы содержат однонитевую РНК, но различаются по стратегии репродукции, (вирусы, содержащие плюс-однонитевую РНК и минус-однонитевую РНК). У плюс-однонитевых вирусов РНК транслируется в структурные белки и служит матрицей (мРНК) для РНК-зависимой РНК-полимеразы.

В состав минус-однонитевых вирусов входит собственная РНК-зависимая РНК-полимераза, продуцируемая на базе генома вируса мРНК. Последняя в свою очередь может быть матрицей для продукции вирусной (минус-однонитевой) РНК.

Ретровирусы имеют плюс-однонитевую РНК, которая не может выступать в качестве мРНК. Она «переписывается» на ДНК при помощи обратной транскриптазы и встраивается в ДНК хозяина. Последующую транскрипцию с образованием мРНК и вирусной РНК контролирует транскриптаза клеток хозяина.

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

Строение капсидов вирусов. Вирусная нуклеиновая кислота покрыта белковой оболочкой, состоящей из повторяющихся единиц (капсида) с икосаэдрическим (кубическим) или спиральным типами симметрии. Капсиды вирусов с икосаэдрическим типом симметрии имеют практически сферическую форму. Спиральный тип симметрии свойствен РНК-вирусам, капсиды которых окружают нуклеиновую кислоту, располагающуюся в виде спирали.

Капсид состоит из повторяющихся компонентов (капсомеров), количество генов, кодирующих его, снижено, тем самым облегчён процесс сборки вируса.

Оболочка вирусов. В некоторых случаях нуклеиновая кислота и капсидные белки вируса (нуклеокапсид) окружены липидной оболочкой, состоящей из компонентов клетки хозяина или ядерных мембран. Мембрана клетки хозяина изменяется под действием белков, кодируемых вирусом, или гликопротеинов, выступающих в роли рецепторов для других клеток хозяина. Покрытые оболочкой вирусы чувствительны к действию веществ, растворяющих липидную мембрану (например, эфиров).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

информатика

Лекции

1. Введение

ИНФОРМАЦИЯ И ЕЕ РОЛЬ В СОВРЕМЕННОМ ОБЩЕСТВЕ.

ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.

ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.

В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: «Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги..»

2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.

Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.

В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.

Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.

В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).

История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.

СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.

6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.

ЛЮБОЕ СООБЩЕНИЕ НА ЛЮБОМ ЯЗЫКЕ СОСТОИТ ИЗ ПОСЛЕДОВАТЕЛЬНОСТИ СИМВОЛОВ- БУКВ, ЦИФР, ЗНАКОВ. Действительно, в каждом языке есть свой алфавит из определенного набора букв (например, в русском- 33 буквы, английском- 26, и т.д.). Из этих букв образуются слова, которые в свою очередь, вместе с цифрами и знаками препинания образуют предложения, в результате чего и создается текстовое сообщение. Не является исключением и язык на котором «говорит» компьютер, только набор букв в этом языке является минимально возможным.

В КОМПЬЮТЕРЕ ИСПОЛЬЗУЮТСЯ 2 СИМВОЛА- НОЛЬ И ЕДИНИЦА (0 и 1), АНАЛОГИЧНО ТОМУ, КАК В АЗБУКЕ МОРЗЕ ИСПОЛЬЗУЮТСЯ ТОЧКА И ТИРЕ. Действительно, закодировав привычные человеку символы (буквы, цифры, знаки) в виде нулей и единиц (или точек и тире), можно составить, передать и сохранить любое сообщение.

ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.

ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.

Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.

3 бита- 8 вариантов;

Продолжая дальше, получим:

4 бита- 16 вариантов,

7 бит- 128 вариантов,

8 бит- 256 вариантов,

9 бит- 512 вариантов,

10 бит- 1024 варианта,

В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.

ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.

СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится «аски», означает «Американский Стандартный Код для Обмена Информацией»- англ. American Standart Code for Information Interchange).

ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.

КАЖДОМУ СИМВОЛУ ASCII СООТВЕТСТВУЕТ 8-БИТОВЫЙ ДВОИЧНЫЙ КОД, НАПРИМЕР:

ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.

Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,

Остальные единицы объема информации являются производными от байта:

1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,

1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,

1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,

1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.

СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.

В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.

7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ

ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.

Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте

Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.

Источник

ВИРУСЫ

Вирусы (лат. virus яд) — неклеточные формы жизни, обладающие собственным геномом и способные к воспроизведению лишь в клетках более высокоорганизованных существ. Для Вирусов в целом характерны две формы существования: внеклеточная, или покоящаяся, и внутриклеточная, размножающаяся (репродуцирующаяся), или вегетативная. Синонимами первого названия являются также термины «вирусная частица», «вирусный корпускул», «вирион», синонимами второго — «комплекс вирус—клетка».

Вирусы существуют в природе, передаваясь от одного хозяина к другому. Репродукция Вирусов может происходить только внутриклеточно, в связи с чем Вирусы являются облигатными внутриклеточными паразитами животных, растений, насекомых, бактерий, грибов и других классов живых существ. Внутриклеточный паразитизм Вирусов обусловлен тем обстоятельством, что они в силу крайней простоты своей организации используют для своего воспроизведения клеточный синтетический аппарат (рибосомы, мембраны), ферменты и энергогенерирующие системы. Связь между двумя формами существования В. осуществляется через нуклеиновую к-ту вириона, к-рая индуцирует в зараженной клетке вирусоспецифические синтезы и, в конечном счете, формирование дочерних вирусных частиц. Различные виды В. на внеклеточной стадии существования характеризуются сравнительно большой вариабельностью размеров (от 15—18 до 3000—3500 нм). Наиболее крупные сложно устроенные В. из рода поксвирусов (Poxvirus), к к-рому принадлежат возбудители оспы и В. осповакцины, различимы в обычном световом микроскопе, но большая часть В. обладает субмикроскопическими размерами и различима лишь в электронном микроскопе.

Содержание

Химический состав вирионов и свойства вирусных компонентов

Вирусные частицы характеризуются простотой своего хим. состава, хотя между различными представителями царства вирусов имеются значительные различия. По этому признаку В. в целом разделяются на две большие группы: простые и сложные. В типичном случае первые В. состоят только из белка и нуклеиновой к-ты, тогда как В. сложные наряду с этими компонентами содержат в своем составе липиды и углеводы, как правило, в форме гликопротеидов.

В свою очередь в пределах этих двух групп также существуют градации. Так, в пределах первой группы В. можно выделить две подгруппы, различающиеся по степени сложности своего белкового компонента. Одна подгруппа образована В., белок которых состоит из одного вида пептидных цепей. К таковым относится большая часть В. растений, и в частности В. табачной мозаики (род Tobamovirus), белок к-рого состоит из 2320 идентичных полипептидов, образованных 158 аминокислотами. Во вторую подгруппу входят В., белок которых образован несколькими типами полипептидных цепей. Различные представители этой подгруппы в свою очередь отличаются по количеству и виду полипептидных цепей. Наиболее просто организованные В. животных, принадлежащие к роду Parvovirus, содержат три вида полипептидных цепей, напр, аденосателлитные В., латентные В. Килхема и др. У сложно устроенных В. типа осповакцины (род Poxvirus) в вирионе насчитывается до 20 различных белков, в т. ч. собственные ферменты. Как правило, сложность состава белка коррелирует со сложностью структурной организации вириона.

Т. о., в типичном случае вирионы представляют собой нуклеопротеиды, т. е. комплекс белка и нуклеиновой к-ты. Исключением из этого правила являются различные дефектные мутанты В., как естественные, так и искусственно полученные, которые вообще не способны синтезировать собственный белок или синтезируют дефектный белок, неспособный образовать нормальную оболочку вирусной частицы. К числу таких дефектных В. можно отнести варианты Вируса погремковости табака, некоторые штаммы В. табачной мозаики, которые в естественных условиях в зараженных клетках существуют в форме комплекса с клеточными белками, а также дефектные варианты В. саркомы Рауса, неспособные синтезировать свою наружную оболочку, формирование к-рой обеспечивается вирусом-помощником (В. птичьего лейкоза).

Вирусы в противоположность клеточным формам жизни содержат в составе вирионов лишь один из двух типов нуклеиновой к-ты: РНК или ДНК, представляющих собой геном вирусной частицы. Т. о., РНК, за к-рой в клетке закрепились лишь функции структурно-метаболические, у В. может выполнять, как и ДНК, функции генетические.

Для В. характерно большое разнообразие форм нуклеиновых кислот, в т. ч. наличие таких форм РНК и ДНК, которые отсутствуют у клеточных форм жизни.

При этом первичная структура РНК и ДНК других В. не обнаруживает каких-либо аномалий по сравнению с клеточными формами нуклеиновых к-т. Однако у многих

В., содержащих ДНК, последняя представлена не линейной, а ковалентно-замкнутой кольцевой молекулой. Такая форма ДНК обнаружена у представителей родов полиомавирусов (Polyomavirus), папиллома-вирусов (Papillomavirus) и липовирусов (Lipovirus).

Из аномалий, связанных со вторичной структурой нуклеиновых кислот В. и не встречающихся среди клеточных нуклеиновых кислот, интересно отметить существование однонитчатых ДНК и двухспиральных РНК. Первая обнаружена у представителей родов Bullavirus и Inovirus, а также среди парвовирусов (Parvovirus): мелкого В. мышей, латентного В. крыс Килхема и аденосателлитных В. Двухспиральная РНК присутствует у реовирусов (род Reovirus) и В. раневых опухолей растений, карликовости риса и цитоплазменного полиэдроза, родовая принадлежность которых пока точно не установлена.

Нуклеиновые кислоты практически всех просто организованных В. обладают инфекционностью. При заражении чувствительных хозяев депротеинизированными препаратами ДНК или РНК этих В. наблюдается типичный инфекционный процесс, заканчивающийся формированием зрелых вирионов потомства. Спектр хозяев и клеток, зараженных препаратами инфекционных нуклеиновых кислот, шире по сравнению с естественным кругом хозяев данного В., т. к. в этом случае нет ограничений, накладываемых специфическим взаимодействием рецепторов В. и клетки. Инфекционность отсутствует у препаратов РНК, выделенных из сложных В. (миксо-, парамиксо-, Рабдовирусы).

Некоторые Вирусы, неспособные синтезировать белки своей оболочки, могут существовать даже в естественных условиях в форме свободной РНК. Обнаруженные этиологические агенты, вызывающие веретеновидность клубней картофеля и экзокортисное заболевание цитрусовых и получившие специальное название «вироиды», представляют собой свободные низкомолекулярные РНК, сходные по размерам с тРНК или 5sPHK. Заражение растений картофеля и цитрусовых препаратами этой РНК вызывает типичную картину заболеваний и репликацию вироидной РНК.

Липидный компонент В. исследован сравнительно хорошо лишь у ортомиксовирусов, парамиксовирусов и арбовирусов (роды Orthomyxovirus, Paramyxovirus, Fiavivirus и Alphavirus). Источником происхождения липидов в этом случае является клеточная мембрана, откуда В. в процессе созревания заимствует свой липидный компонент. Глико-протеиды входят в состав поверхностных образований вирусных частиц, напр. гемагглютининов у миксовирусов и парамиксовирусов. Пути их синтеза пока не изучены.

Структура вирусных частиц

Белок вирионов выполняет двоякую функцию. Во-первых, он образует наружную оболочку (капсид), защищающую нуклеиновую к-ту вирусной частицы. Нуклеиновая к-та с окружающим ее белком обозначается термином «нуклеокапсид», или «нуклеоид». Последний термин обычно применяется морфологами для обозначения внутренних структурных образований, содержащих нуклеиновую к-ту у сложно устроенных В. позвоночных. У просто организованных В. термины «нуклеокапсид» и «вирион» по существу тождественны, но у многих сложно устроенных В. наряду с белковым капсидом имеется еще одна или несколько внешних оболочек, чаще всего липидных или белковых, для обозначения которых пользуются термином «суперкапсид». Так, у В. гриппа имеется внутренний нитевидный нуклеопротеид (нуклеокапсид), известный под названием внутреннего антигена, или S-антигена, заключенный внутри белковой базальной мембраны и внешней липопротеиновой оболочки (суперкапсид).

Для выполнения своих защитных функций капсид В. должен обладать достаточно высокой стабильностью, особенно по отношению к таким факторам внутриклеточной среды, как деструктивные ферменты. В связи с этим нативные неповрежденные вирионы устойчивы к высоким концентрациям протеолитических ферментов. Исключение из этого правила составляют лишь немногие, сложно устроенные В., как, напр., арбовирусы группы Б (род Flavivirus). Эта устойчивость обусловлена высокоупорядоченной третичной и четвертичной структурой белковых субъединиц (капсомеров) в составе капсида, благодаря чему пептидные связи, чувствительные к протеазам, стерически недоступны для действия ферментов. После частичной денатурации или деградации белковый капсид В. легко гидролизуется протеазами.

Вторая функция капсида заключается в обеспечении адсорбции В. только на тех клетках, где может происходить их размножение. Такая специфичность взаимодействия В. с ограниченным кругом хозяев обеспечивается наличием на поверхности вирионов специфических рецепторов, которые соответствуют определенным рецепторам на поверхности клеток. В тех случаях, когда В. лишены специализированных рецепторов, как, напр., В. растений, их попадание в клетки природных хозяев обусловливается определенными переносчиками.

К числу простых относятся все Вирусы, представляющие собой «голый» нуклеокапсид, хотя их оболочка может состоять из нескольких видов полипептидных цепей. В этом случае структура вирусных частиц подчиняется строгим правилам симметрии (см. Симметрия). У сложно устроенных В., имеющих высоко-дифференцированную структуру и суперкапсиды, симметрия, как правило, становится более сложной.

Серологические свойства вирусов

Поскольку Вирусы содержат белки, а в ряде случаев гликопротеиды и липопротеиды, то вирионы несут определенные антигенные детерминанты, вызывающие образование специфических антител как при естественных формах инфекции, так и в опытах по иммунизации лабораторных животных. Просто устроенные В., содержащие один вид белка, вызывают образование одного вида антител, сложно устроенные В., содержащие различные виды белков и разные структурно-морфологические компоненты, несут несколько типов антигенов.

Внеклеточные В. при контакте с антителами против наружных антигенов теряют свою инфекционность (нейтрализуются), но из неинфекционного комплекса вирус—антитело снова можно получить инфекционные вирионы после диссоциации такого комплекса при воздействии кислых pH, температуры и высокой ионной силы. В. внутриклеточные к нейтрализующему действию анти-сыворотки устойчивы, и такой прием нередко используется для изучения адсорбции и проникновения В. в клетки.

По вопросу о роли антител в иммунитете к вирусным инфекциям единой точки зрения нет, что, по-видимому, связано с различиями в биологии разных В., путей их распространения и циркуляции в организме, местах синтеза, доступности для антител и т. п. (см. Иммунитет противовирусный).

Комплекс вирус — клетка и основные закономерности репродукции вирусов

Для В. в целом характерен так наз. дизъюнктивный (лат. disjunctus разобщенный) путь репродукции, означающий, что в процессе репликации В. родительский вирион как таковой исчезает.

В зараженной клетке присутствие вирусных частиц не обнаруживается ни с помощью серологических, ни с помощью электронномикроскопических методов вплоть до поздних стадий инфекции, когда появляются первые дочерние вирионы (так наз. латентный период инфекции, синонимами к-рого являются термины «эклипс-период», «период маскировки», фаза смены информаций — «си-фаза»).

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

Проникновение В. в клетку происходит по механизму, близкому к пиноцитозу (см.), но конечный результат остается тем же (рис. 1). В этом случае инфицирующий вирион после адсорбции на клеточных рецепторах захватывается клеточной мембраной, к-рая впячивается внутрь клетки, образуя вакуоль. В процессе взаимодействия вириона с клеточной мембраной его капсид претерпевает деструктивные изменения и приобретает чувствительность к клеточным протеазам, которые и разрушают вирусный белок, освобождая вирусную нуклеиновую к-ту. У сложно устроенных В. из родов Poxvirus, Paramyxovirus, Orthomyxovirus и Rhabdovirus течение этого процесса осложняется тем, что удаление суперкапсида и капсида нуклеоида разобщено во времени и проходит в две стадии. При этом нуклеиновая к-та может быть транскрибирована непосредственно в составе нуклеокапсида или нуклеоида, освободившихся от суперкапсида. Процесс транскрипции в этом случае осуществляется с помощью вирусных РНК-полимераз, входящих в состав нуклеоида (см. Транскрипция).

Следующая особенность дизъюнктивного способа репродукции В. состоит в том, что синтез элементов вирусного корпускула осуществляется в виде пулов (обменных фондов), которые разобщены и в пространстве, и во времени. Нуклеиновая к-та вируса может реплицироваться, напр., в ядре или ядрышке, белок может синтезироваться в цитоплазме, а сборка целых вирионов или нуклеокапсидов может происходить на внутренней поверхности цитоплазматической мембраны. Наконец, сложный липопротеиновый суперкапсид может приобретаться В. в процессе отпочкования.

Последующей стадией репродукции (после проникновения вирусной нуклеиновой к-ты в клетку) является синтез вирусоспецифических ферментов и белков, необходимых для репликации В. (так наз. ранние белки, не входящие в состав вирионов). Детали этого процесса у разных В. различаются в зависимости от того, какой тип нуклеиновой к-ты входит в состав вирионов. У большей части В., которые содержат однонитчатую РНК, последняя способна выполнять одновременно и функции генетической детерминанты, и функции собственной информационной РНК — так наз. (+) цепи. Эти родительские (+) цепи РНК непосредственно связываются с рибосомами и транслируются, т. е. наводят в них синтез вирусоспецифических белков. В этом случае первым актом вирусоспецифических синтезов в зараженной клетке будет трансляция вирусной (+) матрицы. У В., содержащих ДНК как однонитчатую, так и двунитчатую, а также однонитчатую РНК, неспособную к трансляции (—) цепи, или двунитчатую РНК, первым синтетическим актом должно быть формирование комплементарной полинуклеотидной цепи, т. е. синтез вирусоспецифических ранних информационных РНК.

Естественно, что этот процесс должен осуществляться с помощью вирусных либо клеточных РНК-полимераз. Если в клетке имеются ДНК-зависимые РНК-полимеразы, способные транскрибировать вирусную ДНК, то РНК-зависимых РНК-полимераз в нормальной клетке нет. В связи с этим последний фермент для осуществления первичного акта транскрипции РНК должен проникать в клетку вместе с инфицирующей вирусной РНК, как правило, в составе нуклеоида или нуклеокапсида. В дальнейшем, после трансляции инфекционных РНК в зараженной клетке появляются и дочерние, т. е. вновь синтезированные РНК-зависимые РНК-полимеразы.

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

На третьей стадии вирусной репродукции происходит репликация вирусной нуклеиновой к-ты, к-рая в случае двухспиральных нуклеиновых кислот осуществляется по известному симметричному полуконсервативному механизму, а в случае однонитчатых нуклеиновых кислот — по асимметричному полуконсервативному механизму, через стадию репликативной (РФ) и репликативной промежуточной (РПФ) форм. Как видно из схемы, представленной на рис. 2, на матрице родительской (+) цепи синтезируется комплементарная ей (—) цепь, в результате чего возникает двухспиральная РФ.

Затем на матрице (—) или (+) цепей начинается одновременный синтез нескольких (+) или (—) полинуклеотидных цепей, соответственно и возникает РПФ.

Четвертая стадия репродукции — это синтез информационных РНК, кодирующих поздние белки, к-рыми являются конститутивные белки, входящие в состав вирионов. Одновременно начинается и формирование вирионов.

Как показали работы Шрамма (G. Schramm) и Фреккель-Конрата (H. Fraenkel-Conrat), индивидуальные полипептидные цепи таких простых В., как В. табачной мозаики, при нейтральных или слабокислых значениях pH способны спонтанно агрегировать в растворе, образуя вирусоподобные частицы (белковые капсиды). При наличии в растворе нуклеиновой к-ты этих В. происходит автоматическая сборка инфекционных вирусных частиц, протекающая как чисто физ.-хим. реакция агрегации и не требующая участия дополнительных факторов. Аналогичным образом происходит и сборка вирионов в зараженных клетках после того, как концентрация вирусных РНК и белка в соответствующих пулах достигнет критического уровня. У сложно устроенных В. принципы самосборки сохраняются лишь на уровне отдельных компонентов вирусных частиц, тогда как сборка этих компонентов в единое целое требует участия многих дополнительных факторов и ферментов, которые сами по себе в состав зрелых вирионов не включаются. Такого рода морфопоэтические факторы В. синтезируются на этой стадии инфекции вместе с конституционными вирусными белками. (См. ниже Морфогенез вирусов.)

Заключительная стадия вирусной инфекции, смыкающаяся с формированием зрелых вирионов, заканчивается освобождением дочерних вирусных частиц в среду. В зависимости от структурной организации и сложности вирионов, а также биологии данного В. и его взаимоотношения с клеткой хозяина этот процесс может осуществляться по-разному у разных групп В. Вирусы могут либо тем или иным способом лизировать клетки, обусловливая цитопатическое действие (патогенные, или литические, вирусы), либо освобождаться из клетки, не разрушая ее (бессимптомная инфекция). У литических, патогенных В. позвоночных и беспозвоночных разрушение клетки достигается либо за счет активации лизосом, либо путем интенсивного повреждения клеточных мембран в процессе отпочкования.

Многие вирусные штаммы и даже виды обладают тем или иным генетическим дефектом и способны репродуцироваться лишь в присутствии других В.— помощников. Классическими примерами являются: штамм Брайена В. саркомы Рауса, реплицирующийся лишь в присутствии В. птичьего лейкоза; аденосателлитный В., способный размножаться в присутствии полноценного аденовируса, мелкий сателлитный Вирусов некроза табака, нуждающийся для успешной репродукции в присутствии крупных частиц В. некроза табака. ДНК аденосателлитного В. и РНК В. некроза табака содержат информацию для синтеза собственного капсидного белка и не содержат полной информации для репликации в клетке.

Наряду с этим имеется также и весьма большая группа РНК-содержащих В. растений с фрагментированным геномом, который распределен среди нескольких видов частиц, образующих инфекционный препарат лишь при наличии всех компонентов.

Так, инфекционный препарат В. мозаики коровьего гороха состоит из трех типов вирионов с коэффициентами седиментации 58S, 95S и 115S, В. мозаики люцерны — из пяти различных компонентов с коэффициентами седиментации 99S, 83S, 76S, 68S, 61S и 53S. Многокомпонентными системами являются также В. мозаики костра, В. стрика табака и некоторые другие. Каждый из компонентов этих В. с фрагментированным геномом сам по себе не инфекционен и содержит лишь определенную часть генетической информации, необходимой для успешного функционирования всей системы в целом.

Взаимоотношения между вирусами и клетками отличаются большой сложностью и определяются как типом вируса, так и геномом клетки и ее физиологическим состоянием.

Вирусный геном в зараженной клетке может вступать в определенные генетические отношения с геномом клетки. По этому признаку В. можно разделить на две большие группы: с автономной репликацией геномов (инфекционные вирусы) и В., способные тем или иным образом взаимодействовать с клеточным геномом (интеграционные вирусы). Последняя группа включает опухолеродные В., нуклеиновая к-та которых способна встраиваться (интегрироваться) тем или иным образом в клеточную хромосому в форме провируса, вызывая трансформацию клеток (см. Трансформация). Границы между этими группами весьма условны, и один и тот же В. в зависимости от вида клеток может вести себя либо как инфекционный, либо как интеграционный. В. с автономной репликацией геномов в свою очередь могут быть по отношению к одним хозяевам патогенными, а по отношению к другим хозяевам нейтральными. Все интеграционные В. в той или иной мере вступают в симбиотические отношения с клеткой хозяина.

Литический, или патогенный, путь развития инфекции определяется тем, что клетки, где происходит репродукция В., в конечном счете погибают.

Летальный исход инфекции для клетки может вызываться рядом независимых причин: 1) специфической и необратимой блокировкой деятельности клеточного генома на ранних стадиях инфекции; 2) неспецифическими повреждениями клеточного генома в процессе инфекции; 3) переключением метаболических ресурсов клетки на вирусоспецифические синтезы; 4) специфическим лизисом клетки, связанным с необходимостью освобождения дочерних вирусных частиц в среду; 5) нарушением структуры клеточных мембран в результате интенсивного выхода вирусных частиц в среду, особенно в процессе отпочкования, и некоторыми другими.

Как видно из этого перечня, лишь первая и третья причины связаны со специфическим цитотоксическим или цитопатогенным действием, запрограммированным в вирусном геноме и реализующимся в процессе инфекции. Остальные из перечисленных причин, приводящих к гибели клеток, строго не детерминированы и обусловлены в основном интенсивностью вирусоспецифических синтезов. Поэтому при некоторых ограничениях в скорости синтеза и освобождения зрелых вирусных частиц в среду клетка может сохранять свою жизнеспособность и длительное время продуцировать вирусные частицы. Несомненно, что такой нейтральный тип взаимоотношений, лежащий в основе бессимптомных инфекций, безусловно, выгоден для В. как вида и представляет собой наименьшее зло для хозяина.

Наконец, между В. и клетками могут существовать и вполне симбиотические отношения, когда несомненные выгоды получают оба партнера комплекса. Примеры такого рода можно найти у онкогенных В. Как известно, трансформация клеток онкогенными В. создает также помехи для суперинфекции в виде феномена интерференции (см. Интерференция вирусов).

Выгоды, которые получают В. при таком интеграционном пути развития инфекции, также несомненны. Прежде всего репликация нуклеиновой к-ты В. целиком обеспечивается клетками, поскольку провирус является частью клеточной хромосомы. Поэтому каждая дочерняя клетка, образовавшаяся в результате деления родительской клетки, несет в себе провирус, что обеспечивает вертикальную передачу В. и его распространение в пределах данного вида хозяев.

Классификация и номенклатура вирусов

В 1966 г. на IX Международном конгрессе микробиологов в Москве был создан Международный комитет по номенклатуре вирусов (МКНВ), который был позже переименован в Международный комитет по таксономии вирусов (МКТВ). МКТВ является органом вирусол. секции Международной ассоциации микробиологов и состоит из представителей национальных обществ. При МКТВ образованы подкомитеты по

В. позвоночных, беспозвоночных, растений и бактерий, которые имеют в своем составе так наз. группы изучения отдельных разделов; напр., в подкомитете В. позвоночных имеются группы изучения энтеровирусов, реовирусов, арбовирусов и др.

Сбор информации о В. и систематизация ее осуществляются в соответствии с характеристикой В. по следующим основным показателям: а) нуклеиновой к-те, белкам, липидам, углеводам, морфологии и физ.-хим. свойствам; б) репликации; в) феноменам генетических взаимодействий; г) кругу хозяев; д) патогенности; е) географическому распространению; ж) способу передачи; з) антигенным свойствам. Значимость каждого из показателей в построении иерархической системы пока еще не до конца определена, но, по-видимому, первая послужит основой формирования крупных таксономических групп (семейства и выше).

Общность антигенной структуры является обязательным признаком при определении вида.

В современной классификации В. (таблица) рассматриваются как единая система, независимо от круга основных хозяев (позвоночных, беспозвоночных, растений, бактерий). Предполагается создание полной иерархической системы, подобной классификации животных, включающей такие таксономические группы, как вид, род, семейство, порядок, класс, и, возможно, еще более высокие категории. Пока не удалось достигнуть четкого определения понятий «вид» и «род». Под видом разумеют группу В. с идентичными свойствами, а род представляет собой группу В., сходных по ряду общих свойств.

К В. применяется биноминальная номенклатура, в соответствии с к-рой наименование вида состоит из родового и видового названий. В силу сложившихся привычек в номенклатуре В. в основном сохраняются уже существующие названия, в т. ч. буквенные и цифровые, если они общеупотребительны. Новые названия создаются по правилам словообразования в латинском и греческом языках. Название порядков оканчивается на «-ales», семейств — на «-idae», родовое название включает слово «virus». Название семейств и родов пишется с прописной буквы, видовое — со строчной. Для некоторых определяющих свойств В. применяется кодированная запись в виде криптограммы (надпись, сделанная знаками), что облегчает восприятие свойств каждого В. или отдельных групп и сопоставление их между собой.

Криптограмма состоит из четырех пар символов, разделенных двоеточием, имеющих следующее значение:

1. Тип нуклеиновой к-ты / число нитей.

2. Молекулярный вес нуклеиновой к-ты / процентное содержание в вирионе.

3. Внешние очертания вириона / очертания нуклеокапсида.

4. Хозяин / переносчик.

Для выражения свойств первой пары употребляют следующие символы: РНК — R, ДНК — D, однонитчатая — 1, двунитчатая — 2.

Молекулярный вес выражают в миллионах дальтон. Если нуклеиновая к-та фрагментирована и состоит из нескольких кусков, то в случае, когда различные куски находятся вместе в одном типе частиц, указывают общий мол. вес со знаком 2. Если же фрагменты нуклеиновой к-ты находятся в различных частицах, то состав и мол. вес в каждой перечисляются отдельно.

Форму вириона и нуклеокапсида обозначают: S — сферическая; E — продолговатая с параллельными сторонами, концы не закруглены; U — продолговатая с параллельными сторонами и закругленным(и) концом(ами); X — комплексная структура.

Для примера приводим криптограмму рода Rhabdovirus, R/1 : 4/2 : U/U:V,I, S/O, Ac, Ap, Di, к-рая расшифровывается так: однонитчатый РНК-содержащий вирус, мол. вес РНК—4 млн. дальтон, что составляет 2% веса вириона. Наружные очертания В. и нуклеокапсида — продолговатые с закругленным концом. Для разных представителей хозяевами являются позвоночные, беспозвоночные, семенные растения. Распространяются через окружающую среду, а также с помощью переносчиков клещей, тлей, двукрылых.

Формирование отдельных таксономических групп идет в зависимости от полноты информации и пока находится на стадии образования родов и семейств. Предложения об образовании таксономических групп и их номенклатуры, исходящие от официально созданных групп изучения или отдельных ученых, рассматриваются соответствующими подкомитетами и приобретают законную силу лишь после утверждения МКТВ.

Морфогенез вирусов

В. проходят сложный строго специфичный для каждой группы В. онтогенетический цикл развития. Морфогенез, или морфопоэз, В. представляет собой основной и наиболее важный этап его онтогенетического цикла развития, который состоит из комплекса последовательных формообразовательных (морфогенетических) процессов, приводящих к образованию вириона — заключительной формы развития В. Процесс индивидуального развития и репродукции В. контролируется его автономной генетической системой — макромолекулярной ДНК или РНК. Геном простейших В. состоит из 1—2 генов, геном сложных ДНК-содержащих В.— из 100 и более генов. Сборка вирионов — заключительный этап морфогенеза В., представляет собой процесс упорядоченной агрегации структурных вирусных компонентов (макромолекул нуклеиновых кислот, структурных белков и т. д.). Сборка вирионов сложных В. регулируется так наз. морфогенетическими генами. Вирионы простейших В. (напр., В. табачной мозаики) или отдельные компоненты сложных вирионов формируются в результате самосборки, к-рая представляет собой процесс спонтанной упорядоченной молекулярной агрегации и определяется в основном структурой белковых субъединиц. Существует определенная зависимость между степенью сложности архитектуры вирионов и сложностью их морфогенеза, т. е. чем сложнее организация вириона, тем больший путь дифференцировки проходит В. в онтогенетическом цикле развития и тем большее число морфогенетических генов контролирует этот процесс.

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

Структура вириона является специфическим признаком каждой группы В. (рис. 3). Вирионам ДНК- и РНК-содержащих вирусов или отдельным их компонентам могут быть присущи два основных типа симметрии: спиральная (винтовая — рис. 4,2—4) и кубическая (рис. 4,2 и 5 и рис. 5 1—3). У некоторых сложно организованных вирионов обнаружен комбинированный тип симметрии (рис. 4, 6 и 7 и рис. 5, 4 и б).

Спиральная укладка макромолекул характеризуется шагом спирали, величиной винтового смещения, длиной спиральной цилиндрической частицы, а также числом субъединиц на один оборот спирали. Если форма белковых субъединиц приближается к сфере, то при их спиральной укладке вдоль оси спирали образуется полость (канал). Подобную организацию имеют все нуклеокапсиды и рибонуклеопротеидные тяжи со спиральной симметрией.

Вирионы с кубическим типом симметрии обнаружены у многих В. человека, животных, растений и бактерий. Эти вирионы характеризуются величиной, группой симметрии, числом и типом осей вращения, числом и морфологией капсомеров. Большая часть вирионов с кубическим типом симметрии построена по типу двадцатигранника (икосаэдра), который имеет оси симметрии второго, третьего и пятого порядков. Кубический тип симметрии характерен или для всего вириона, или для внутреннего компонента сложных вирионов.

В 1967—1970 гг. было показано (А. А. Авакян и А. Ф. Быковский), что цикл развития каждого В. состоит из пяти стадий, к-рым соответствуют пять форм существования В.

Т. о., цикл развития В. можно представить следующим образом. Проникший в чувствительную клетку виронуклеон индуцирует образование полигеномного виропласта, который представляет собой комплекс структур, обеспечивающих репликацию нуклеиновой к-ты В., синтез специфических антигенов, а также скопления этих компонентов. Виропласты обнаружены в цикле развития всех ДНК- и многих РНК-содержащих В. человека и животных.

Некоторые из них локализуются в цитоплазме (В. группы оспы, реовирусы, энтеровирусы), другие — в ядре инфицированной клетки (В. группы герпеса, паповавирусы и др.). Конечный этап дифференцировки полигеномного виропласта — формирование моногеномных виропластов, каждый из которых является начальной стадией онтогенеза нового поколения В. и включает в себя геном В., набор специфических ферментов и структурных белков. Развитие моногеномного виропласта завершается синтезом (формированием) de novo оболочки В. Затем В. (провирион) отделяется от виропласта, и последующая дифференцировка его структуры идет в морфологически изолированной от внешней среды (органоидов клетки) полости. При этом наблюдается строгая последовательность и преемственность морфогенетических процессов.

В результате сборки и самосборки происходит не только увеличение массы структурных компонентов провириона до определенной (строго постоянной для каждого вида В.) величины, но и наблюдается последовательное чередование роста и дифференцировки структур В. По-видимому, окончание формирования ряда структур (напр., первичной оболочки В. оспы) является своеобразным сигналом, включающим следующий этап дифференцировки провириона. В результате этих динамических морфогенетических процессов образуется вирион — споровая форма В., обеспечивающая сохранение генома, следовательно, и вида В. После освобождения генома В. из вириона начинается новый цикл развития В.

Морфогенез простейших РНК-содержащих Вирусов можно описать как процесс самосборки. Это характерно не только для такого простого В. как спутник В. табачного некроза, геном к-рого — молекула РНК — имеет мол. вес ок. 400 000 дальтон и может кодировать только один белок, но и для В. табачной мозаики, геном к-рого состоит из 5—6 генов. Более сложен морфогенез у РНК-содержащих В. животных и человека, вирионы которых, кроме нуклеокапсида, имеют внешнюю оболочку (миксовирусы, онкорнавирусы, арбовирусы и пр.).

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

Геном таких В. является полицистронным и программирует синтез не одного-двух, а многих белков, в т. ч. и тех, которые не входят в структуру вириона. Синтез РНК некоторых из этих В. происходит в цитоплазме, других — в ядре клетки; синтез же вирусных белков идет только в цитоплазме на полирибосомах в зоне виропласта. Отдельные компоненты этих В., напр, рибонуклеопротеидные тяжи миксовирусов, формируются в процессе самосборки, однако композиция вириона требует более сложных морфогенетических процессов, в субмикроскопической морфологии которых выявляется ряд последовательных этапов: проникновение в клетку, внутриклеточный морфогенез и выделение из клетки (рис. 6—8).

В процессе морфогенеза тогавирусов, миксовирусов, онкорнавирусов, рабдовирусов в состав вирионов входят компоненты мембранных клеточных структур (цитоплазматической оболочки, эндоплазматического ретикулума, ядерной оболочки, комплекса Гольджи, мембран митохондрий), модифицированных в процессе инфекции.

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

вирусы не содержащие ни одного постоянного участка кода являются. Смотреть фото вирусы не содержащие ни одного постоянного участка кода являются. Смотреть картинку вирусы не содержащие ни одного постоянного участка кода являются. Картинка про вирусы не содержащие ни одного постоянного участка кода являются. Фото вирусы не содержащие ни одного постоянного участка кода являются

Морфогенез ДНК-содержащих В. также весьма различен у разных групп этих В. и зависит от сложности архитектуры вириона (рис. 9 и 10).

Морфогенез В., так же как и структура вириона, является специфическим признаком каждой группы В.

Генетика вирусов позвоночных

Геном В. позвоночных может быть представлен различными формами нуклеиновых кислот (см. выше).

В структуре генома В. позвоночных, как и других живых организмов, различают отдельные участки: гены, цистроны, мутоны, реконы. В геномах В. позвоночных может быть закодировано от 6—8 (пикорнавирусы) до нескольких сотен (поксвирусы) белков. Попытки построить генетические карты В. позвоночных пока не дали положительных результатов. Лишь в опытах с полиовирусом удалось установить, что на 51 конце РНК располагается генетическая информация на капсидные белки вириона, и определить последовательность цистронов, кодирующих эти белки [Рекош (D. Rekosh)].

Свойства В., передающиеся по наследству, называются генетическими признаками. Совокупность всей наследственной информации В. определяет его генотип (см.). В результате взаимодействия генотипа и окружающей среды формируется фенотип, под к-рым понимается совокупность всех проявляемых в конкретных условиях генетических признаков. Среди генетических признаков В. позвоночных чаще всего изучают вирулентность, характер и размер бляшек, образуемых В. на культуре ткани под агаром, характер и размер поражений на хорионаллантоисной мембране куриных эмбрионов, способность размножаться при измененной температуре. Изучают также такие генетические признаки, как характер цитопатических изменений, способность к размножению в различных видах клеток, способность индуцировать образование интерферона и чувствительность к нему, способность образовывать бляшки при особых условиях (измененная концентрация соды, в присутствии декстрана и пр.), размножение в присутствии ряда ингибиторов и пр. Изучают также генетические признаки, отражающие особенности вириона, напр, морфологию вириона, константу седиментации его, устойчивость инфекционности или других биол, свойств вириона к температуре, ультрафиолетовым лучам и т. п., способность к адсорбции на биол, и хим. субстанциях (эритроциты, ДЭАЭ-целлюлоза и пр.) и т. д. Предполагается, что отдельный генетический признак В. связан с функцией какого-либо одного вирусоспецифического белка. Необходимо учитывать, однако, что мутационные повреждения в одном участке генома нередко приводят к изменению нескольких генетических признаков, имеющих различное фенотипическое проявление (плейотропия). В то же время в основе изменения генетического признака, имеющего одно и то же фенотипическое выражение (напр., способность размножаться при повышенной температуре), могут лежать мутационные повреждения различных генов.

Получено большое количество мутантов вирусов позвоночных, т. е. вирусов, у которых в результате мутационного повреждения участка генома изменилось определенное наследственное свойство. В последние годы особое внимание привлекают условно летальные мутанты, использование которых позволило изучить ряд важных особенностей строения генома и выявить некоторые новые стадии репродукции. Условно летальные мутанты — мутанты, у которых жизненно важный белок в результате мутационного повреждения утрачивает способность функционировать при определенных неразрешающих условиях, но нормально осуществляет свою функцию в обычных условиях репродукции. У В. позвоночных известны два вида условно летальных мутантов: 1) температурочувствительные (ts) мутанты, неспособные, в отличие от ts+ штаммов (диких), в условиях повышенной температуры образовывать инфекционные вирусные частицы, и 2) зависимые от хозяина hd-мутанты, утерявшие способность размножаться на некоторых видах клеток. Температурочувствительные мутанты получены в опытах с пикорнавирусами, тогавирусами, миксовирусами, рабдовирусами, ретровирусами, реовирусами, паповавирусами, аденовирусами и В. группы оспы; hd-мутанты обнаружены у пикорнавирусов, В. оспы и вируса герпеса.

В процессе одновременного размножения нескольких вирусных частиц в одной клетке между этими частицами могут происходить генетические взаимодействия и обмен генетическим материалом. Известно несколько видов генетических взаимодействий В. позвоночных. Множественная реактивация — процесс, который имеет место при заражении клеток В., частично инактивированными ультрафиолетовыми лучами, при множественности инфекции более одной вирусной частицы на клетку. Поскольку при ультрафиолетовом облучении происходит разрушение лишь отдельных участков генома, в основе феномена множественной реактивации лежит рекомбинация сохранивших нативность участков генетического материала нескольких проникших в клетку вирусных частиц с образованием полноценного генома. Такой феномен удалось наблюдать в опытах с В. гриппа и В. группы оспы. Рекомбинация — обмен генетическим материалом между размножающимися в одной клетке вирусными частицами, различающимися по нек-рым наследственным признакам. В результате образуются рекомбинанты (гибриды), обладающие частью свойств одного, а частью свойств другого родительского штамма (см. Рекомбинация). Рекомбинанты В. позвоночных удается получать только при скрещивании близких по свойствам В., принадлежащих к одной группе. Частота возникновения рекомбинантов широко варьирует и существенно зависит от используемой системы (клетки, вирус), а также от того, какое наследственное свойство стремятся рекомбинировать. Рекомбинация с высокой частотой наблюдается у РНК-содержащих В. (ортомиксовирусов, реовирусов, онкорнавирусов) и у всех ДНК-содержащих В., геном которых представлен двунитчатой ДНК. Кросс-peактивация (спасение маркера) — феномен, сходный с рекомбинацией, однако один из участвующих В. используют в нативном виде, а другой инактивируют путем частичного разрушения генетического материала (ультрафиолетовое облучение, слабое нагревание). С помощью кросс-реактивации удалось получить рекомбинанты при скрещивании В. гриппа и В. оспы. Гетерозиготность — феномен, заключающийся в том, что при одновременном размножении в клетке нескольких частиц В., различающихся по наследственным свойствам, могут образовываться вирионы, содержащие полный геном одного родительского штамма и, кроме того, часть генома (или полный геном) другого В. (диплоидные или полиплоидные вирионы). Хотя такого рода объединение генетического материала в одной вирусной частице не наследуется, оно позволяет такому вириону дать потомство, в к-ром будет содержаться часть вирусных частиц со свойствами одного, а часть — другого родителя. Вирусные частицы, дающие описанный феномен, получили название гетерозигот, в отличие от обычных гомозиготных частиц, все потомство которых обладает одинаковыми свойствами. Феномен гетерозиготности обнаружен в опытах с В. гриппа и В. ньюкаслской болезни. Транскапсидация — феномен, при к-ром часть чужеродного генетического материала, заключенного внутри капсида другого неродственного В., способна переноситься в стабильной форме в чувствительные к основному В. клетки. Наблюдается при одновременном выращивании в клетках аденовируса и обезьяньего вируса SV40, в процессе к-рого часть генетического материала вируса SV40 ковалентно связывается с ДНК аденовируса и при последующем проникновении такой частицы в клетки этот участок генома вируса SV40 способен индуцировать образование трансформирующего антигена.

Из дополнительных материалов (том 29)

Генетика вирусов позвоночных является одним из важнейших разделов вирусологии, в задачу к-рого входит изучение наследственности и изменчивости вирусов человека и животных, а также установление функции вирусных генов и кодируемых ими белков.

Исследования в области генетики вирусов позвоночных значительно интенсифицировались в последние годы. Полученные результаты были использованы не только для понимания механизмов репродукции, строения генома и функции отдельных генов, но и в практической медицине. Так, выявление функции вирусных генов помогло выяснить механизмы патогенности вирусов, их способность преодолевать иммунные барьеры организма. Изучение мутационной и рекомбинационной изменчивости вирусов способствовало выяснению механизмов возникновения новых вариантов вирусов, обладающих резко выраженной вирулентностью, а также резистентностью к противовирусным ингибиторам. Генетические исследования вирусов помогают также установить причины возникновения персистентных и вялотекущих вирусных инфекций, выяснить влияние вируса на геном клетки-хозяина (с одной стороны, интеграция генома вируса в геном клетки как возможная причина возникновения злокачественных опухолей, с другой — повреждения хромосом, ведущие к генетическим заболеваниям). Создание современных живых и инактивированных вирусных вакцин оказалось возможным лишь на основе знания генетики вирусов и освоения методов генетических исследований.

Примерно у 80% известных вирусов генетическим материалом является РНК, а у 20% — ДНК. У РНК-содержащих вирусов геном может быть представлен в нескольких формах: линейной одноцепочечной молекулой РНК, обладающей инфекционными свойствами и способной служить матрицей для синтеза вирусных белков; такой же молекулой РНК, но не обладающей инфекционными свойствами и матричной активностью (так наз. вирусы с негативным геномом); несколькими молекулами одноцепочечной линейной РНК, содержащими сходную генетическую информацию; сегментированной линейной одноцепочечной РНК, большинство сегментов к-рой кодирует один вирусный белок; сегментированной линейной двуцепочечной РНК, каждый сегмент к-рой кодирует один вирусный белок. У ДНК-содержащих вирусов геном может быть представлен одноцепочечной линейной ДНК, двуцепочечной циркулярной ДНК, двуцепочечной линейной ДНК. Обнаружено, что у нек-рых вирусов, геном к-рых представлен как ДНК (паповавирусы), так и РНК (ортомиксовирусы), один и тот же ген может кодировать не один, а несколько белков (в результате сдвига рамки кода с одного гена).

Благодаря развитию генетической инженерии удалось синтезировать ДНК-копии отдельных генов или всего генома РНК-содержащих вирусов позвоночных, вставить (с помощью плазмид) участки вирусных генов в геном кишечной палочки и получить клоны этих бактерий, в к-рых происходит интенсивный синтез ДНК-копий генов РНК-co держащих вирусов или отдельных генов ДНК-содержащих вирусов. Это позволило провести анализ полной последовательности нуклеотидов многих генов и даже всего генома вирусов позвоночных. Применение рестрикционных эндонуклеаз, способных расщеплять нуклеиновые к-ты в строго определенных участках, способствовало построению генетических карт большинства ДНК-содержащих вирусов позвоночных и определению количества генов, их взаиморасположения в геноме, а также выявлению белков, кодируемых конкретным геном, у многих РНК-co держащих вирусов (пикорнавирусы, рабдовирусы, парамиксовирусы, ретровирусы, буньявирусы, ортомиксовирусы, аренавирусы, реовирусы).

Из мутантов вирусов позвоночных, как правило, исследуют условно-летальные мутанты — температурно-чувствительные (ts) и зависимые от хозяина (hd), а также жизнеспособные делеционные мутанты, т. е. мутанты, у к-рых в результате мутации произошло выпадение определенного участка генома. У словно-летальные мутанты вирусов позвоночных получают различными способами: селекцией так наз. спонтанных мутантов; селекцией мутантов из вирусной популяции, обработанной мутагенами; в результате пассажей вирусов в условиях пониженной температуры или в нечувствительной к данному вирусу системе к леток-хозяев.

Значительный прогресс достигнут в построении генетических карт генома ряда вирусов позвоночных. Сегменты генома различных штаммов одного и того же рода вирусов, имеющих сегментированный геном, удается дифференцировать, используя метод молекулярной гибридизации, при к-ром гибридизация РНК-рекомбинанта, обладающего фенотипом вируса дикого типа, с обоими родителями (мутантом и вирусом дикого типа) позволяет четко картировать сегмент РНК, содержащий мутацию. Таким путем были локализованы мутации и определены белки, кодируемые большинством сегментов геномной РНК, у реовирусов, ортомиксовирусов, буньявирусов, аренавирусов, ротавирусов.

В опытах с ДНК-co держащими вирусами позвоночных для картирования мутаций и построения физических и генетических карт с успехом используют фрагменты геномной ДНК, полученные при обработке последней рестрикционными эндонуклеазами, способными разрывать ДНК в определенных участках, характерных для каждой индивидуальной рестриктазы, в результате чего удается получать набор фрагментов (рестриктов) ДНК. При картировании мутаций определяют ре-стрикт ДНК-вируса дикого типа, способный заменить в инфицированных клетках мутантный ген, в результате чего образуется вирус, к-рый в отличие от исходного мутанта может размножаться в неблагоприятных для этого условиях («спасение» мутанта). Поскольку для большинства ДНК-co держащих вирусов построены физические карты геномов, в к-рых определены позиции каждого из рестриктов, получаемых при обработке различными рестриктазами, метод «спасения» мутантов рестриктами ДНК вируса дикого типа позволяет точно локализовать мутацию в геноме и создавать генетические карты. Этот способ можно применять при анализе мутаций паповавирусов, аденовирусов, вирусов герпеса и ортопокс-вирусов. В наст, время разработаны методы анализа отдельных генов вирусов позвоночных — молекулярная гибридизация, пептидное и о лигонуклеотидное картирование, использование моноклональных антител. Они позволяют выявить точечные мутационные изменения в генах вирусов, у к-рых каких-либо фенотипических проявлений мутаций не обнаруживается.

При изучении изменчивости вирусов в природе особое внимание обращают на популяционную изменчивость, т. е. изменчивость не единичных вирионов, а всей вирусной популяции в целом. В основе популяционной изменчивости вирусов лежит первоначальное изменение наследственного материала индивидуальной вирусной частицы, к-рое может быть обусловлено мутацией или рекомбинацией с последующей селекцией тех изменивших наследственные свойства вирионов, к-рые оказались наиболее приспособленными к изменившимся условиям окружающей среды. В результате возникает популяция вируса, обладающая новыми наследственными свойствами. Примером такой изменчивости является возникновение популяций вирусов, устойчивых к противовирусным химиотерапевтическим препаратам, нашедшим достаточно широкое применение, а также появление новых эпидемических и пандемических штаммов вируса гриппа, способных преодолевать иммунитет к ранее циркулировавшим в популяции людей штаммам этого вируса. С помощью новых методов, позволяющих анализировать отдельные гены вирусов, было показано, что у людей могут одновременно циркулировать вирусы, принадлежащие к одному и тому же подтипу, но отличающиеся по ряду генов, причем, как это обнаружено для вируса гриппа, во время одной и той же эпидемии могут циркулировать вирусы, отличающиеся как по антигенной специфичности гемагглютинина, так и по генам, кодирующим внутренние белки вириона. Изучение взаимосвязи между функцией отдельных генов и патогенностью вирусов позвоночных для человека показало, что патогенность является комплексным свойством, в проявлении к-рого участвуют продукты нескольких вирусных генов. Возможность получения патогенных рекомбинантов при скрещивании непатогенных исходных штаммов, так же как и непатогенных рекомбинантов при скрещивании патогенных вирусов, свидетельствует в пользу того, что для проявления патогенности важны не только особенности индивидуальных генов, но и их определенное сочетание в составе генома.

Усовершенствование методов анализа генетических взаимоотношений между вирусами позволило выявить наличие рекомбинации между ts-мутантами пикорнавирусов (вирусы полиомиелита и ящура), хотя частота этой рекомбинации невелика. В результате опытов с РНК-содержащими вирусами, геном к-рых сегментирован, показано, что в основе рекомбинации между этими вирусами, достигающей очень высокой частоты, лежит обмен и перераспределение сегментов генома в процессе совместного культирования скрещиваемых партнеров; в то же время обнаружено, что у этих вирусов может происходить внутригенная рекомбинация по классическому механизму (кроссинговер), частота к-рой, однако, весьма низка. Показана возможность рекомбинации между ортомик-совирусами типа А человека и животных, что имеет особое значение для понимания механизмов возникновения эпидемических штаммов вируса гриппа. У вирусов позвоночных с сегментированным геномом, в частности реовирусов и ортомиксовирусов, в 1979 г. Рамиг и Филдс (R. Ramig, В. Fields) обнаружили феномен, получивший название экст-рагенной супрессии. Суть феномена заключается в том, что продукт определенного сегмента генома, унаследованного рекомбинантом, способен влиять на функцию другого гена, входящего в состав генома рекомбинанта, напр, супрессировать проявление ts-фенотипа. Т. о., при анализе свойств рекомбинантов вирусов позвоночных, особенно обладающих сегментированным геномом, необходимо учитывать, что измененные свойства рекомбинантов могут быть обусловлены не только непосредственно функцией продукта гена, унаследованного от одного из родителей, но также влиянием продукта одного из унаследованных генов на функцию других генов, входящих в состав генома.

Успехи в изучении процессов рекомбинации вирусов позвоночных позволили использовать эти результаты для получения вакцинных вирусных штаммов, в частности вируса гриппа. Так, разработан метод получения высокопродуктивных рекомбинантных вакцинных штаммов для инактивированных вакцин путем рекомбинации высокопродуктивного штамма-донора с новыми антигенными вариантами эпидемических штаммов вируса гриппа. Предложены также способы быстрого получения рекомбинантных вакцинных штаммов для живых гриппозных вакцин. При этом вирус — холодоадаптированный донор рекомбинируют с новыми антигенными вариантами эпидемических штаммов вируса гриппа. Рекомбинанты, унаследовавшие от холодоадаптированного донора 5—6 генов, кодирующих внутренние белки, а от нового эпидемического штамма гемагглютинин и нейраминидазу, после соответствующей проверки используют для приготовления живых вакцин.

В последнее время ведутся исследования по созданию вакцин с помощью методов генетической инженерии. При этом получают клоны кишечной палочки или дрожжей, содержащие соответствующую ДНК-копию вирусного гена, кодирующего белок, ответственный за иммунитет. Этот белок, продуцируемый бактериальным клоном, предполагают использовать в качестве инактивированной вакцины. Другой метод заключается в введении ответственного за иммунитет гена одного вируса в геном крупного ДНК-со-держащего вируса (напр., вируса осповакцины), имеющего делецию определенной области генома, не являющейся жизненно важной для вируса (вирус-вектор). Такой гибридный вирус, размножаясь в вакцинированном организме, может вызвать иммунитет и к тому чужеродному вирусу, ген к-рого содержится в геноме этого вируса-вектора. Следует, однако, отметить, что пока вирусные вакцины, получаемые с помощью методов генетической инженерии, не нашли практического применения, хотя исследования в этом направлении ведутся во многих странах.

Вирусы беспозвоночных

составляют большую группу В., поражающих гл. обр. представителей класса насекомых (Insecta). В последнее время стали известны также вирусные заболевания наукообразных клещей (класс Arachnoidea) и ракообразных (класс Crustacea). Имеются сообщения о наличии вирусоподобных частиц у амебы и парамеций (Protozoa).

Группа В. цитоплазменного полиэдроза относится к сем. Reoviridae. Вирионы с диам. 60 нм представлены икосаэдрами и содержат 21—23% двунитчатой РНК. Они заключены в крупные полиэдры и локализуются в цитоплазме клеток средней кишки пораженного насекомого. Поражаются насекомые из отряда чешуекрылых и сетчатокрылых (Neuroptera). Трупы погибших гусениц затвердевают, кишечник приобретает беловатый оттенок. Типичный представитель — В. цитоплазменного полиэдроза тутового шелкопряда. РНК этого В. имеет мол. вес 12,7—21 X 10 6 и состоит из двух фрагментов — 12S и 15S.

К сем. Poxviridae относятся «энтомопоксвирусы». Они содержат ДНК, локализуются в цитоплазме и имеют овальные вирионы размером 300— 400 нм. Вирионы заключены в веретенообразные или яйцевидные включения (до 15 мкм). Характерна ребристая поверхность вирионов. Типичный представитель — В. майского хруща (Melolontha melolontha).

Одна из групп В. насекомых близка по свойствам к энтеровирусам. Представителем этой группы является В. острого паралича пчел. Вирионы — изометрические сферические частицы с диам. 20—30 нм, содержат однонитчатую РНК и локализуются в цитоплазме клеток жирового тела. Паралич и гибель пчел наступают через 2—4 дня после инфицирования.

В. насекомых широко распространены в природе. Из 300 В. насекомых ок. 200 принадлежат к В. полиэдрозов и гранулезов, остальные — к В., не образующим включений. Характерно латентное вирусоносительство. Активация латентного В. под действием различных стрессоров приводит к эпизоотиям среди вредных и полезных насекомых, снижая их численность. Поражаются гл. обр. личиночные стадии насекомых. Заражение происходит через пищу, поврежденные покровы, трансовариально. Инфекционным материалом служат трупы погибших гусениц, загрязненная ими пища, фекалии, гемолимфа. В. могут распространяться больными гусеницами, ветром, водой, через почву, птицами. Инкубационный период зависит от дозы В., возраста гусениц и внешних факторов (особенно температуры). В пораженном насекомом В. накапливается в количестве 10—30% от веса тканей. Чаще наблюдается групповая специфичность: один В. поражает обычно близкие виды, но некоторые В. могут поражать различные виды, роды и даже отряды насекомых. Так, радужный В. Tipula экспериментально передан 7 видам двукрылых (Diptera), И видам чешуекрылых (Lepidoptera) и 3 видам жесткокрылых (Coleoptera).

Благодаря значительному накоплению В. в теле гусениц, образованию эпизоотий и безвредности для человека и животных В. беспозвоночных используются в биол, борьбе с вредными насекомыми. Они используются также как чрезвычайно удобные модели для исследования вопросов общей вирусологии.

Вирусы растений

По морфологии вирионов В. растений относятся к четырем группам: 1. Спиральные палочковидные В., имеющие жесткую структуру, напр. ВТМ (300X18 нм), В. штриховатой мозаики ячменя (130X19 нм). 2. Спиральные нитевидные В., отличающиеся значительной длиной и эластичностью вирионов, напр. Х-вирус картофеля (520 X 12 нм), В. желтухи сахарной свеклы (1250X 10 нм), В. мозаики плевела (1725X18 нм). 3. Сферические или икосаэдрические В., напр. В. некроза табака (20 нм), желтой мозаики турнепса (30 нм). 4. Бацилловидные или пулевидные В., содержащие мембраны и внутренний нуклеокапсид, напр. В. карликовости кукурузы (240X48 нм), желтой карликовости картофеля (380X75 нм), мозаики озимой пшеницы (260X60 нм). Структура жестких палочек известна только у В. растений, нитевидные формы, несущие РНК, также найдены только у В. растений, сферические вирионы известны у бактериофагов и В. животных, бацилловидные — у В. животных.

Представитель первой группы — ВТМ — имеет вирион в форме жесткого цилиндра с размерами 300 X 18 нм и мол. весом 39 X 106 дальтон. Стенка цилиндра образована спирально уложенными одинаковыми белковыми молекулами — субъединицами, число которых составляет ок. 2130. Мол. вес субъединицы ок. 18 000 дальтон. Витки спирали плотно прилегают друг к другу и каждый из них включает 161/3 субъединиц.

Тяж вирусной РНК, состоящий приблизительно из 6400 нуклеотидов и имеющий мол. вес 2Х10 6 дальтон, проходит между рядами белковых субъединиц, следуя их спиральному расположению, на расстоянии 4 нм от центра поперечного сечения частицы. При таком расположении на каждые три нуклеотида тяжа РНК приходится одна белковая субъединица. Внутри цилиндра, по всей его длине, проходит полость с диам. 4 нм. Вирусная РНК защищена белком от действия клеточных нуклеаз, но низкомолекулярные вещества, в т. ч. мутагены, могут проникать в область локализации РНК, оказывая на нее инактивирующее или мутагенное действие. В экспериментальных условиях вирионы некоторых палочковидных и сферических В. растений удалось дезагрегировать на белковые субъединицы и РНК с сохранением их нативного состояния и затем вновь вызвать агрегацию этих компонентов с восстановлением структуры, инфекционности и других свойств вирионов.

У большинства В. растений геном представлен однотяжной РНК, но В. раневых опухолей растений и карликовости риса имеют двутяжную РНК. ДНК найдена пока только у сферического вируса мозаики цветной капусты. Известны В. растений, РНК-геном которых фрагментирован, каждый из фрагментов несет часть генетической информации и заключен в отдельный капсид. Только объединенное действие всех фрагментов обеспечивает функции полного генома. К таким В. растений относятся возбудители погремковости табака, мозаики люцерны и др. У некоторых В. растений геном настолько мал, что не обеспечивает репликацию вирусной РНК. Так, у сателлита В. некроза табака мол. вес РНК составляет всего лишь 0,4х10^6 дальтон, он индуцирует синтез собственного оболочечного белка, но не имеет цистрона синтетазы и паразитирует за счет неродственного В. некроза табака, используя его синтетазу.

В. растений проникают в клетки растений путем пиноцитоза (см.) при повреждениях, обнажающих участки плазматической мембраны. В природе они распространяются гл. обр. сосущими насекомыми, клещами, нематодами и зооспорами некоторых низших грибов — корневых паразитов. Известны В. растений, размножающиеся в организме насекомых-переносчиков, часть из них передается потомству переносчиков через яйцо. Некоторые В. распространяются семенами больных растений. Вегетативное размножение растений особенно способствует распространению В.

Внутриклеточное развитие В. растений следует тем же закономерностям, какие известны для репродукции РНК-содержащих В. вообще. Многие В. растений образуют в клетках кристаллические включения, состоящие из вирионов, и аморфные, содержащие В. и компоненты цитоплазмы. Болезни растений, вызванные В., хронические, выздоровления не наступает. Интенсивное размножение В. происходит в растущих листьях и других органах. В меристеме точки роста В. немного, в апикальной ее части он может отсутствовать, на этом основан прием стерильного выращивания здоровых растений из кусочков меристемы. Некоторые В. инактивируются в зараженных растениях при тепловой обработке. Химиотерапия против В. растений не разработана.

Одни В. поражают растения многих видов, другие узко специализированы. ВТМ, напр., в опытных условиях способен заразить растения многих видов типа цветковых, нескольких видов типа папоротниковидных, он инфицирует протопласты дрожжей, а его РНК реплицируется и транслируется in vitro даже во фракции митохондрий, изолированной из клеток печени крысы.

Отдельные группы вирусов — см. статьи по названию группы вирусов (напр., Аденовирусы, Ареновирусы, Кишечные вирусы, Онкогенные вирусы, Парвовирусы и др.).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *