Как появились натуральные числа кратко

Счет у первобытных людей

Запоминать большие числа было трудно, и поэтому кроме паль­цев рук и ног «задействовались» другие «приспособления». Напри­мер, перуанцы использовали для этого разноцветные шнурки с завя­занными на них узлами. Веревочные счеты с узелками были в ходу в России, а также во многих странах Европы. До сих пор иногда завязывают узелки на носовых платках на память.

На более высокой стадии развития люди при счете стали применять разные предметы: использовали камешки, зерна, веревку с бирками. Это были первые счетные приборы, которые, в конце концов, приве­ли к образованию разных систем счисления и к созданию современ­ных быстродействующих электронных вычислительных машин.

3. Цифры у разных народов

Мысль выражать все числа знаками

настолько проста, что именно из-за

этой простоты сложно осознать,

сколь она удивительна.

Пьер Симон Лаплас (1749-1827), франц. астроном, математик, физик.

3.1. Появление цифр

Сначала считали на пальцах. Когда пальцы на одной руке кончались, переходили на другую, а если на двух руках не хватало, переходили на ноги. Поэтому, если в те времена кто-то хвалился, что у него «две руки и одна нога кур», это означало, что у него пятнадцать кур, а если это называлось «весь человек», то есть две руки и две ноги.

Перуанские инки вели счет животных и урожая, завязывая узелки на ремешках или шнурках разной длины и цвета. Эти узелки назывались кипу. У некоторых богатеев скапливалось по несколько метров этой веревочной «счетной книги», попробуй, вспомни через год, что означают 4 узелочка на шнурочке! Поэтому того, кто завязывал узелки, называли вспоминателем.

Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа кратко

Первыми придумали запись чисел древние шумеры. Они пользовались всего двумя цифрами. Вертикальная чёрточка обозначала одну единицу, а угол из двух лежачих чёрточек – десять. Эти чёрточки у них получались в виде клиньев, потому что они писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали. Вот так выглядели эти дощечки.

Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа кратко

Так, например, в древней египетской нумерации, зародившейся более 5000 лет назад, существовали особые знаки (иероглифы) для записи чисел 1, 10, 100, 1000, …

Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа кратко

Для того чтобы изобразить, например, целое число 23145, достаточно записать в ряд два иероглифа, изображающие десять тысяч, затем три иероглифа для тысячи, один – для ста, четыре – для десяти и пять иероглифов для единицы

Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа кратко

Этого одного примера достаточно, чтобы научиться записывать числа так, как их изображали древние египтяне. Это система очень проста и примитивна.

В начале нашей эры индейцы племени майя, которые жили на полуострове Юкатан в Центральной Америке, пользовались другой системой счисления – двадцатеричной. Они обозначали 1 точкой, а 5 – горизонтальной чертой, например, запись ‗‗‗‗‗‗ означала 14. системе счисления майя был и знак для нуля. По своей форме он напоминал полузакрытый глаз.

В Древней Греции сначала числа 5, 10, 100, 1000, 10000 обозначали буквами Г, Н, Х, М, а число 1 – черточкой /. Из этих знаков составляли обозначения    Г (35) и т.д. Позднее числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000 стали обозначать буквами греческого алфавита, к которому пришлось добавить еще три устаревшие буквы. Чтобы отличить цифры от букв, над буквами ставили черточку.

Древние индийцы изобрели для каждой цифры свой знак. Вот как они выглядели.

Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа кратко

Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа кратко

Они похожи на многие наши цифры. Слово «цифра» тоже досталось нам от арабов по наследству. Арабы нуль, или «пусто», называли «сифра». С тех пор и появилось слово «цифра». Правда, сейчас цифрами называются все десять значков для записи чисел, которыми мы пользуемся: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа кратко

Постепенное превращение первоначальных цифр в наши современные цифры.

3.2. Римская нумерация

3.3. Цифры русского народа

Арабские числа в России стали применять, в основном, с XVIII века. До того наши предки использовали славянскую нумерацию. Над бук­вами ставились титлы (черточки), и тогда буквы обозначали числа.

Первые девять чисел записывались так:

Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа кратко

Сотни миллионов назывались «колодами».

«Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа краткоКолода» имела специальное обозначение: над буквой и под бук­вой ставили квадратные скобки. Например, число 108 записывалось в виде

Числа от 11 до 19 обозначались так:

Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа кратко

Остальные числа записывались буквами слева направо, напри­мер, числа 5044 или 1135 имели соответственно обозначение

Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа кратко

При записи чисел больших, чем тысячи, в практической деятельно­сти (счете, торговле и т.д.) часто вместо кружков ставили знаки «; Л» перед буквами, обозначавшими десятки и сотни тысяч, например, запись

Как появились натуральные числа кратко. Смотреть фото Как появились натуральные числа кратко. Смотреть картинку Как появились натуральные числа кратко. Картинка про Как появились натуральные числа кратко. Фото Как появились натуральные числа кратко

означает соответственно 500044 и 540004.

Сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Сколь­ко времени заняло бы выполнение самым быстрым расчетчиком миллиона вычислительных операций, которые современная вычис­лительная машина выполняет за. секунду? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость трени­рованного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.

Для сокращения записи больших чисел давно используется сис­тема величин, в которой каждая из последующих в тысячу раз боль­ше предыдущей:

1000 секстиллионов- 1 септиллион

1000 нониллионов- 1 дециллион

Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 х 11=33 нулями:

1 000 000 000 000 000 000 000 000 000 000 000.

Как писал Самуил Яковлевич Маршак: «Напрасно думают, что ноль играет маленькую роль».

При записи больших чисел часто используют степень числа 10.

Заметьте, что число нулей степени 10 всегда равно ее показателю:

10 1 = 10, 10 2 = 100, 10 3 = 1000 и т.д.

И еще одно: математики во всем мире давно приняли, что любое число в нулевой степени равно единице 0 = 1).

Числа-символы

0 – абсолют, 1 – его проявление. Все это заключено в Солнце.

2 – двойственность и эмоциональность с ней связанная – свойства Луны.

3 – прошлое, настоящее и будущее время – Сатурн.

4 – четыре стороны света, пространство – Юпитер.

5 – любовь и человек – Венера.

6 – соединение двух треугольников – корень активности, отношений, а также преданность – свойства Марса.

7 – полнота знаний, деталей, особенностей, подвижность – это качества Меркурия.

8 – бесконечность, лунные узлы как точки затмений, во время которых временное соотносится с Вечным.

Источник

История натуральных чисел

История натуральных чисел

Слово арифметика происходит от греческого слова арифмос, что означает «число». Можно сказать, что арифметика — это наука о числах и действиях с ними.

Арифметика возникла в странах Древнего Востока: Египте, Вавилоне, Китае и Индии, накопленные математические знания которых были развиты и продолжены учеными Древней Греции.

Термин натуральное число впервые употребил в VI в. в своей книге «О введении в арифметику» Боэций — римский ученый, переводивший на латынь работы математиков прошлого.

Натуральные числа служат фундаментом всей математической науки.

Первыми записями чисел были зарубки на деревянных брусках, а позднее черточки. Для обозначения больших чисел стали применять специальные знаки-цифры. Вы познакомились с арабскими цифрами, составляющими основу десятичной нумерации.

В Древней Руси для записи чисел использовались буквы алфавита. Чтобы отличить буквы от цифр, над буквами ставили специальный знак — титло. Первые девять букв алфавита обозначали единицы, следующие девять букв — десятки, а последние десять букв — сотни. Число десять тысяч называли словом тьма.

В Древнем Риме была создана своя система нумерации. Римские цифры мы можем увидеть на фронтонах некоторых старинных зданий, в книгах, где ими нумеруют главы, да и номер нашего двадцать первого века обычно записывают в римской системе счисления.

В римской нумерации есть семь основных цифр, которыми являются буквы языка древних римлян — латыни.

Существует несколько гипотез о происхождении римских цифр. Одни считают, что V обозначает раскрытую ладонь с пятью пальцами, а X — две скрещенные руки. Другие же полагают, что к появлению знака X привело перечеркивание десяти черточек, а V — это половина от X.

Где бы в записи числа ни стояла римская цифра, она всегда обозначает одно и то же число. Однако и в римской системе счисления есть некоторые правила записи чисел.

Правила записи чисел в римской системе

Современная десятичная запись натуральных чисел появилась в Индии в VI в. В VII-VIII вв. ее переняли арабы, а затем с ней познакомились и в странах Европы, где ее назвали арабской. Интересно, что сами арабы по-прежнему называют свою систему индийской. Как ни странно, но до XVIII в. в Европе в официальных документах разрешалось использовать только римские цифры, и лишь с начала XIX в. арабскую нумерацию стали применять повсеместно.

Под округлением натурального числа понимают замену его таким ближайшим по значению числом, в котором одна или несколько последних цифр заменены нулями.

До XV в. общепринятых арифметических знаков не было. В XV-XVI вв. стали применять для сложения букву p — первую букву слова plus (более), а для вычитания букву m — первую букву слова minus (менее). Использовали также латинское слово et (союз «и»), которое в скорописи постепенно превратилось в знак «+». Современные знаки «+» и «-» стали встречаться в 80-х гг. XV в. Знак умножения «×» был введен в 1631 г. английским математиком Вильямом Оутредом (1574-1660). Точку для обозначения умножения стал использовать знаменитый немецкий математик XVII в. Готфрид Вильгельм Лейбниц (1646-1716). Он же предложил двоеточие для обозначения действия деления. Знак «=» был введен английским врачом Робертом Рекордом в 1557 г.

Современные знаки действий и равенства входили во всеобщее употребление медленно и стали общепринятыми лишь в конце XVII в.

Таблицы квадратов и кубов чисел были составлены еще древними вавилонянами. Древнее происхождение имеет и таблица умножения. Ею пользовались вавилоняне, греки, римляне и другие народы. Наиболее ранняя известная таблица умножения от 1 × 1 до 10 × 10 содержится в «Арифметике» греческого математика Никомаха из Геразы (I-II вв.). Передаваясь от народа к народу, из поколения в поколение, таблица умножения дошла и до нас.

Знание таблицы умножения всегда считалось необходимым для каждого ученика.

Буквы и различные математические знаки медленно входили во всеобщее употребление. До XV в. все величины записывались словами. Алгебру того времени поэтому называют риторической, т. е. словесной. Лишь во второй половине XV в. в некоторых странах Европы появились первые буквенные символы.

В конце XVI в. французский математик Франсуа Виет (1540-1603) ввел буквы для обозначения не только неизвестных, но и любых чисел.

Создание буквенной символики, происходившее во многих странах мира, было завершено в XVII в., и к первой половине XVIII в. установилась общепризнанная система записи буквенных выражений.

Скобки и современный знак равенства встречаются впервые в трудах математиков XVI в. Знаки неравенства « » были введены в первой половине XVII в. английским ученым Гарриотом.

Изобретение математических знаков и символов значительно облегчило изучение математики и ускорило ее развитие.

Еще 4000 лет назад древние вавилоняне и египтяне решали различные задачи землемерия, строительства и военного дела с помощью уравнений. Задачи, решаемые с помощью уравнений, встречаются во многих текстах глубокой древности.

Источник

История развития натурального числа. Полезная информация для учителей математики.

Можно ли представить себе мир без чисел? На протяжении всей своей жизни мы сталкиваемся с числами и выполняем над ними арифметические действия. Нас это не удивляет. Мы воспринимаем это, как факт, как само собой разумеющееся и даже не задумываясь об их происхождении. Без знания прошлого нельзя понять настоящее. Поэтому целью данной работы является исследование истории возникновения чисел, связанной с необходимостью выражения всех чисел знаками.

Так, первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов.

Практически ежедневно мы сталкиваемся с необходимостью обработки числовой информации, что влечет за собой необходимость создания и усовершенствования вычислительных устройств, благодаря которым обрабатывается огромное количество данных за наименьшее время. Так, для электронного хранения данных в памяти компьютера удобны две цифры, поскольку они требуют только двух состояний электронной схемы – «включено» (это соответствует цифре 1) и «выключено» (это соответствует цифре 0). Такое представление информации называется двоичным или цифровым кодированием. Способы цифрового кодирования текстов, звуков, изображений, а также трехмерных объектов были придуманы в 80-х годах прошлого века.

Цифры, знаки обозначения арифметических действий и другие математические символы вырабатывались людьми постепенно на протяжении веков. Большинство их образовалось из рисунков, чертежей, букв и сокращённых слов.

Согласно учению Пифагора, числа являются мистической сущностью вещей, математические абстракции таинственно руководят миром, устанавливая в нем определенный порядок. Пифагорейцы высказывали предположение о том, что все закономерности мира можно выразить с помощью чисел. Числа признавались не просто выражениями закономерного порядка, но и основой материального мира.

1. Развитие представления о понятии «число».

Еще в глубокой древности числа относились к области тайного. Они зашифровывались символами, и считались символами гармонии мира. Существует много теорий о происхождении чисел.

Пифагорейцы считали, что числа принадлежат к миру принципов, лежащих в основе мира вещей. Пифагор говорил: «Все вещи можно представить в виде чисел».

Аристотель называл число «началом и сущностью вещей, их взаимодействием и состоянием».

Древние египтяне были убеждены, что постижение священной науки чисел составляет одну из высших ступеней герметического действия, без него не может быть посвящения.

У китайцев нечетные числа – это Ян (небо – благоприятность), четные числа – инь (земля, изменчивость и неблагоприятность). Нечетность символизирует незавершенность, непрекращающийся процесс, постоянное продолжение, то есть все то, что не имеет конца, относятся к области вечного. Поэтому в орнаментах, в укрощениях архитектурных или скульптурных сооружений используется обычно нечетное число черт или элементов. Числа – символ порядка. Реки, деревья и горы представляют собой материализованные числа.

Люди научились считать еще в каменном веке. На первых этапах существования человеческого общества числа, открытые в процессе практической деятельности, служили для примитивного счета предметов, дней, шагов и т.п. В первобытном обществе человек нуждался лишь в нескольких первых числах. Но с развитием цивилизации ему потребовалось изобретать все большие и большие числа. Этот процесс продолжался на протяжении многих столетий и потребовал напряженного интеллектуального труда.

С зарождением обмена продуктами труда у людей появилась необходимость сравнивать число предметов одного вида с числом предмета другого вида. На этом этапе возникли понятия «больше», «меньше», «столько же» или «равно». Знания постепенно росли, и чем дальше, тем больше увеличилась потребность в умении считать и мерить.

Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства.

То, что первобытные люди сначала знали только «один», «два» и «много», подтверждается тем, что в некоторых языках, например в греческом, существуют три грамматические формы: единственного числа, двойственного числа и множественного числа. Позднее человек научился делать различия между двумя и тремя деревьями и между тремя и четырьмя людьми. Счет изначально был связан с вполне конкретным набором объектов. У некоторых племен Австралии и Полинезии до самого последнего времени было только два числительных: «один» и «два», а все числа больше двух, получали названия в виде сочетаний этих двух числительных: число 3 – это «два и один», 4 – «два и два», 5 – «два, два, один».

Жизнь заставляла племена учиться быстрее, поэтому у земледельческих народов математика из наборов отдельных простейших правил постепенно стала превращаться в науку.

Из истории возникновения счета и чисел.

Учиться считать люди начали в незапамятные времена, а учителем у них была сама жизнь.

Древние люди добывали себе пищу главным образом охотой. На крупного зверя — бизона или лося — приходилось охотиться всем племенем: в одиночку ведь с ним и не справишься. Чтобы добыча не ушла, ее надо было окружить, ну хотя бы так: пять человек справа, семь сзади, четыре слева. Тут уж без счёта никак не обойдешься! И вождь первобытного племени справлялся с этой задачей, Даже в те времена, когда человек не знал таких слов, как «пять» или «семь», он мог показать числа на пальцах рук.

Есть и сейчас на земле племена, которые при счёте не могут обойтись без помощи пальцев. Вместо числа пять они говорят «рука», десять — «две руки», а двадцать — «весь человек», — тут уж присчитываются числа на пальцах рук. В Африке есть племя, где и в наше время люди считают «один», «два», «три», а дальше «много».

Так люди начинали учиться считать, пользуясь тем, что дала им сама природа, — собственной пятернёй.

Предметы считать просто; один, два, три, четыре.… Измерить небольшое расстояние тоже несложно. Надо только иметь какую – нибудь мерку. Даже теперь мы нередко меряем расстояние по способу первобытных людей — считаем шаги.

Гораздо труднее найти мерку для времени. Тут ни пальцы, ни шаги не помогут: время можно измерять только временем. А мерка? Мерку надо было искать в природе.

Самыми древними «часами», которые к тому же никогда останавливались и не ломались, оказалось солнце. Утро, день, вечер, ночь. Не очень уж точные мерки, но поначалу первобытному человеку этого было достаточно. Потом люди научились определять время более точно: днём — по солнцу, а ночью — по звёздам.

Звёзды были для людей не только первыми часами, но и первым компасом.

А как разделить год? Весь год — это целых 365 дней, очень большая и не всегда удобная мера времени. На помощь пришла луна. Люди заметили, что от полнолуния до полнолуния проходит почти ровно тридцать суток. Так появилась ещё одна мера времени — месяц. Понятно, почему и по-русски и на многих других языках слово «месяц» означает и луну, и отрезок времени. Потом месяц стали делить ещё на четыре части. Из этих четвертушек месяца родились наши недели.

Для того чтобы считать дни нужны большие числа: десятки, сотни и даже тысячи. Тут, конечно, никаких пальцев для счёта хватить не могло! Да и считая предметы, их можно было перекладывать, пересчитывать несколько раз. А в счёте времени ошибаться нельзя. Прошедший день исчез, его не вернёшь, не присоединишь к другим.

Как же считали дни люди в те времена, когда они и писать не умели?

Додумались. Ведь можно было каждый день делать зарубку на палке и потом зарубки эти сосчитать. Так началась первая на земле запись прожитых дней. Только делали её не пером, а топором. Именно таким деревянным календарём пользовался на необитаемом острове Робинзон Крузо. Через каждые тридцать дней, то есть каждое новолуние, он делал на своём календаре зарубку подлиннее. Получалась отметка месяца. Из месяцев складывался год.

Некоторые народы — например индейцы в Северной Америке — вместо зарубок на палке завязывали узлы на шнуре или верёвке.

Так люди постепенно учились считать до сотен и тысяч и даже «записывать» эти числа с помощью палки или верёвки.

Постепенно росли знания людей, и чем дальше, тем больше увеличивалась потребность в умении считать и мерить. Скотоводам приходилось пересчитывать свои стада, а при этом счёт мог идти уже сотнями и тысячами. Земледельцу надо было знать, сколько земли засеять, чтобы прокормить себя до следующего урожая, А время посева? Ведь, если посеять не вовремя, урожая не получишь!

Счёт времени по лунным месяцам уже не годился. Нужен был более точный календарь. К тому же людям всё чаще приходилось сталкиваться с большими числами, запомнить которые трудно или даже невозможно. Нужно было придумать, как их записывать.

Около пяти тысяч лет назад люди додумались до того, что числа можно записывать не просто зарубками-единицами, а по разрядам: отдельно единицы, отдельно десятки, отдельно сотни. Это было очень важным открытием. Считать и записывать числа теперь стало гораздо легче.

В древнем Вавилоне считали не десятками, а шестидесятками. Число шестьдесят играло у них такую же роль, как у нас десять. Вавилоняне пользовались всего двумя цифрами. Вертикальная чёрточка обозначала одну единицу, а угол из двух лежачих чёрточек — десять. Эти чёрточки у них получались в виде клиньев, потому что вавилоняне писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали.

Вавилонская запись чисел была не очень удобной. Скучное занятие — рисовать много клинышков или уголков подряд, чтобы записать число двумя знаками. А если число было большое, то нередко происходила путаница, потому что специального значка для обозначения разряда 60 не было. И например, число 3600 изображалось, как и единица, вертикальным клином. Вот тут и разберись!

Очень интересная система счёта была у народа майя, который жил в Центральной Америке (там, где сейчас государство Мексика). Около двух тысяч лет назад индейцы майя были гораздо культурнее, чем народы, жившие в то время в Европе.

Майя считали двадцатками — у них была двадцатеричная система счёта. Числа от 1 до 20 обозначались точками и чёрточками. Если под числом был нарисован особый значок в виде глаза, это значило, что число надо увеличить в двадцать раз. Получались уже не единицы, а двадцатки, второй разряд. Если глаз был нарисован дважды, то число надо было дважды умножить на двадцать. Это был третий разряд — четырёхсотки. Выходит, что изображение глаза играло у майя ту же роль, что у нас цифра нуль. Только они рисовали глаз не рядом с числом, а под ним.

Китайцы, как и египтяне, пользовались десятичной системой счёта. Кроме цифр от 1 до 9 там есть ещё значки для 10, 100 и 1000. Если справа от цифры стоит значок «10», — значит, цифру надо умножить на 10, Получаются десятки, второй разряд.

Любопытны были различные методы обозначения чисел, придуманные египтянами и вавилонянами, греками и римлянами. Но у всех этих методов был один недостаток: по мере увеличения чисел нужны были всё новые и новые знаки. И когда один из величайших древнегреческих математиков Архимед научился называть громадные числа, никто из купцов, чиновников или военачальников не обратил на это внимания. А метод Архимеда был и впрямь замечателен. Он просто называл обычную единицу единицей чисел первых, а мириаду мириад, то есть 100000000, — единицей чисел вторых. Мириаду мириад чисел вторых он назвал единицей чисел третьих и так вел счёт до мириады мириад чисел мириадо-мириадных.

Чтобы представить себе, каким громадным было это число, достаточно сказать, что по-нашему оно записывается в виде единицы с 800000000 нулями. Но и здесь не остановился великий ученый. Мириаду мириад чисел мириадо-мириадных он назвал единицей чисел второго периода и, продолжая идти вперёд, дошёл до чисел мириадо-мириадного периода. Насколько велико это число, сказать почти невозможно. Если записать его обычным почерком на бумажной ленте, то эта лента окажется во много тысяч раз длиннее, чем расстояние от Земли до Солнца! Чтобы записать, сколько нулей в числе Архимеда, надо написать цифру 8 и поставить после неё 16 нулей.

Но хотя названия громадных чисел у Архимеда уже были, обозначать их он ещё толком не умел. Не хватало ему самой малости. Архимед, один из гениальнейших математиков, не додумался до…нуля!

Впервые нуль был придуман вавилонянами примерно две тысячи лет назад. Но они применяли его лишь для обозначения пропущенных разрядов. Писать нули в конце записи числа они не догадались. Да к тому же их система счисления была, как мы знаем, шестидесятичной, и поэтому их открытие оказалось незамеченным народами, считавшими в десятичной системе счисления. Может быть, к идее о нуле для десятичной системы счёта пришли счётчики на абаке, знавшие, что иногда не приходится не класть камешки в какую-нибудь канавку на доске? Может быть, это сделали александрийские купцы? Но обычно считают, что это замечательное достижение было сделано в Индии полторы тысячи лет тому назад.

Нуль был присоединён к девяти цифрам, и появилась возможность обозначать этими девятью цифрами любое число как бы велико оно не было.

Индийцы очень обрадовались этой возможности, и в их легендах есть повествования о битвах, в которых участвовало такое количество обезьян, что для его обозначения надо было написать после единицы ещё 23 нуля! Столько обезьян не поместится во всей Солнечной системе.

И самое главное, запись таких гигантских чисел стала довольно короткой. Ведь если бы живший тридцать тысячелетий тому назад древний человек имел представление о миллионе и захотел бы изобразить это число с помощью зарубок на волчьих костях ему пришлось бы истребить 20 тысяч волков. А для записи миллиарда не хватило бы волков во всех европейских лесах. Теперь же вся запись умещалась в одной строке!

Надо сказать, что хотя введение обозначения нуля оказалось чрезвычайно полезным для математики, первоначально некоторые «учёные» встретили это нововведение враждебно. «Зачем обозначать то, чего нет!» Но полезность нового открытия скоро стала ясна всем.

Как же в древности пользовались люди своим умением считать? Для чего им была нужна математика?

Народам-земледельцам, для того чтобы прожить и прокормиться, нужно было знать гораздо больше, чем кочевникам-скотоводам. Жизнь заставляла их учиться быстрее. Поэтому у земледельческих народов математика из набора отдельных простейших правил постепенно стала превращаться в науку.

Развитие представления о понятии «число».

Еще в глубокой древности числа относились к области тайного. Они зашифровывались символами, и считались символами гармонии мира. Существует много теорий о происхождении чисел.

Пифагорейцы считали, что числа принадлежат к миру принципов, лежащих в основе мира вещей. Пифагор говорил: «Все вещи можно представить в виде чисел».

Аристотель называл число «началом и сущностью вещей, их взаимодействием и состоянием».

Древние египтяне были убеждены, что постижение священной науки чисел составляет одну из высших ступеней герметического действия, без него не может быть посвящения.

У китайцев нечетные числа – это Ян (небо – благоприятность), четные числа – инь (земля, изменчивость и неблагоприятность). Нечетность символизирует незавершенность, непрекращающийся процесс, постоянное продолжение, то есть все то, что не имеет конца, относятся к области вечного. Поэтому в орнаментах, в укрощениях архитектурных или скульптурных сооружений используется обычно нечетное число черт или элементов. Числа – символ порядка. Реки, деревья и горы представляют собой материализованные числа.

Люди научились считать еще в каменном веке. На первых этапах существования человеческого общества числа, открытые в процессе практической деятельности, служили для примитивного счета предметов, дней, шагов и т.п. В первобытном обществе человек нуждался лишь в нескольких первых числах. Но с развитием цивилизации ему потребовалось изобретать все большие и большие числа. Этот процесс продолжался на протяжении многих столетий и потребовал напряженного интеллектуального труда.

С зарождением обмена продуктами труда у людей появилась необходимость сравнивать число предметов одного вида с числом предмета другого вида. На этом этапе возникли понятия «больше», «меньше», «столько же» или «равно». Знания постепенно росли, и чем дальше, тем больше увеличилась потребность в умении считать и мерить.

Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства.

То, что первобытные люди сначала знали только «один», «два» и «много», подтверждается тем, что в некоторых языках, например в греческом, существуют три грамматические формы: единственного числа, двойственного числа и множественного числа. Позднее человек научился делать различия между двумя и тремя деревьями и между тремя и четырьмя людьми. Счет изначально был связан с вполне конкретным набором объектов. У некоторых племен Австралии и Полинезии до самого последнего времени было только два числительных: «один» и «два», а все числа больше двух, получали названия в виде сочетаний этих двух числительных: число 3 – это «два и один», 4 – «два и два», 5 – «два, два, один».

Жизнь заставляла племена учиться быстрее, поэтому у земледельческих народов математика из наборов отдельных простейших правил постепенно стала превращаться в науку.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *