ΠΠ°ΠΊ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ sinx cosx
Π£ΡΠΎΠΊ ΠΏΠΎ Π°Π»Π³Π΅Π±ΡΠ΅ ΠΈ Π½Π°ΡΠ°Π»Π°ΠΌ Π°Π½Π°Π»ΠΈΠ·Π° Π² 10-ΠΌ ΠΊΠ»Π°ΡΡΠ΅ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π½Π° ΡΠ΅ΠΌΡ «Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. Π€ΡΠ½ΠΊΡΠΈΠΈ y=sin x*y=cosx»
Π Π°Π·Π΄Π΅Π»Ρ: ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°
1. ΠΠΎΠ²ΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ. Π£Π³Π»Ρ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅.
ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΠΏΠΎΠ²ΠΎΡΠΎΡΠΎΠΌ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π²ΠΎΠΊΡΡΠ³ ΡΠΎΡΠΊΠΈ Π Π½Π° ΡΠ³ΠΎΠ» Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°ΠΊΠΎΠ΅ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ:
Π°) ΡΠΎΡΠΊΠ° Π ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°Π΅ΡΡΡ Π½Π° ΡΠ΅Π±Ρ;
Π±) ΠΊΠ°ΠΆΠ΄ΡΠΉ Π»ΡΡ OX ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°Π΅ΡΡΡ Π½Π° Π»ΡΡ OX, ΡΠ°ΠΊΠΎΠΉ, ΡΡΠΎ ΡΠ³ΠΎΠ» XOX1=ΠΈ OX=OX1.
ΠΡΡΡΡ ΡΠΎΡΠΊΠ° Π 2 Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΠΏΡΠΈ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ΅ ΡΠΎΡΠΊΠΈ Π 0(1;0) Π½Π° ΡΠ³ΠΎΠ» Π² ΡΠ°Π΄ΠΈΠ°Π½. ΠΠ΅ΡΡΡΠ΄Π½ΠΎ ΠΏΠΎΠ½ΡΡΡ, ΡΡΠΎ ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΡΠΊΠΈ Π 2 β ΡΡΠΎ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π°
, Π° Π°Π±ΡΡΠΈΡΡΠ° ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ β ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π°
.
Π’.ΠΊ. ΠΏΠΎΠ²ΠΎΡΠΎΡΡ Π 2 ΠΈ Π ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ, ΡΠΎ ΡΠΎΡΠΊΠ° Π 2 Π±ΡΠ΄Π΅Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΈΡΠ»Ρ
, Π½ΠΎ ΠΈ Π²ΡΠ΅ΠΌ ΡΠΈΡΠ»Π°ΠΌ Π²ΠΈΠ΄Π°
, Π³Π΄Π΅ n
Z.
ΠΡΠΈΠΌΠ΅Ρ: ΠΠ°Π½Π° ΡΠΎΡΠΊΠ° Π 0(1;0). ΠΠ° Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΏΠΎΡΡΡΠΎΠΉΡΠ΅ ΠΎΠ±ΡΠ°Π·ΡΡ ΡΠΎΡΠΊΠΈ Π 0 ΠΏΡΠΈ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°Ρ
ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π²ΠΎΠΊΡΡΠ³ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π½Π° ΡΠ³Π»Ρ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ
Π Π·Π°ΠΏΠΈΡΠΈΡΠ΅ ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ.
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y=sinx.
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ y=sinx.
ΠΠ°ΡΠΈΠ°Π½Ρ 1.
1. ΠΠ°ΠΉΡΠΈ Π³ΡΠ°Π΄ΡΡΠ½ΡΡ ΠΌΠ΅ΡΡ ΡΠ³Π»Π°, Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ :
,
2. ΠΠ°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ²ΠΎΡΠΎΡΠΎΠΌ ΡΠΎΡΠΊΠΈ Π (1;0) Π½Π° ΡΠ³ΠΎΠ»:
Π°) Z
Π±) Z
3. ΠΠ°ΠΉΡΠΈ Π²ΡΠ΅ ΡΠ³Π»Ρ (Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ ), Π½Π° ΠΊΠΎΡΠΎΡΡΠ΅ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ²Π΅ΡΠ½ΡΡΡ ΡΠΎΡΠΊΡ Π (1;0), ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠΎΡΠΊΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ:
Π°) cos
Π±) 2sin(-
5. Π£ΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅:
Π°)
Π±)
ΠΠ°ΡΠΈΠ°Π½Ρ 2.
1. ΠΠ°ΠΉΡΠΈ Π³ΡΠ°Π΄ΡΡΠ½ΡΡ ΠΌΠ΅ΡΡ ΡΠ³Π»Π°, Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ :
2. ΠΠ°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ²ΠΎΡΠΎΡΠΎΠΌ ΡΠΎΡΠΊΠΈ Π (1;0) Π½Π° ΡΠ³ΠΎΠ»:
Π°) Z
Π±) k
Z
3. ΠΠ°ΠΉΡΠΈ Π²ΡΠ΅ ΡΠ³Π»Ρ (Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ ), Π½Π° ΠΊΠΎΡΠΎΡΡΠ΅ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ²Π΅ΡΠ½ΡΡΡ ΡΠΎΡΠΊΡ Π (1;0), ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠΎΡΠΊΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ:
Π°) sin
Π±) cos(-)*3tg(-
5. Π£ΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅:
Π°)
Π±)
ΠΠΎΠ΄Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΡΠΎΠ³ΠΎΠ² ΡΡΠΎΠΊΠ°:
ΠΠ° Π΄ΠΎΡΠΊΠ° ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΠ²Π½Π°Ρ ΡΠ°Π±Π»ΠΈΡΠ° Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ ΡΡΠΎΠΊΠ°.
ΠΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΈΡΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΡΡ ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΡ Π½Π° ΡΠ΅ΠΌΡ: βΠΠ²ΠΈΠΆΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉβ
14. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ°
ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΈ
14.1. Π‘ΠΠΠΠ‘Π’ΠΠ Π€Π£ΠΠΠ¦ΠΠ y = sin x Π ΠΠ ΠΠ ΠΠ€ΠΠ
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = sin x (ΡΠΈΠ½ΡΡΠΎΠΈΠ΄Π°)
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ y = sin x
ΠΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅
ΠΠΏΠΈΡΡΠ²Π°Ρ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΌΡ Π±ΡΠ΄Π΅ΠΌ ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π²ΡΠ΄Π΅Π»ΡΡΡ ΡΠ°ΠΊΠΈΠ΅ ΠΈΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ:
1) ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ; 2) ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ; 3) ΡΠ΅ΡΠ½ΠΎΡΡΡ ΠΈΠ»ΠΈ Π½Π΅ΡΠ΅ΡΠ½ΠΎΡΡΡ; 4) ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ; 5) ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΠΌΠΈ
ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ; 6) ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π°; 7) ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ * ;8) Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅
Π Π° ΠΌ Π΅ Ρ Π° Π½ ΠΈ Π΅. ΠΠ±ΡΡΠΈΡΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΎΡΡΡ ΠΡ
(ΡΠΎ Π΅ΡΡΡ ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ) Π½Π°Π·ΡΠ²Π°ΡΡ Π½ΡΠ»ΡΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ° β ΡΡΠΎ ΠΎΡΠ΄ΠΈΠ½Π°-
ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ
(ΡΠΈΡ. 79). ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π΄Π»Ρ
Π»ΡΠ±ΠΎΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ (Π² ΡΠΈΠ»Ρ ΡΠΎΠ³ΠΎ,
ΡΡΠΎ ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΡ ΡΠΎΡΠΊΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π²ΡΠ΅Π³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ
ΠΏΡΠΎΠ²Π΅ΡΡΠΈ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΡ ΠΏΡΡΠΌΡΡ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡ-
Π½ΡΡ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ), ΡΠΎ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
y = sin x β Π²ΡΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°. ΠΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°-
ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ: D (sin x) = R.
ΠΠ»Ρ ΡΠΎΡΠ΅ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π½Π°Ρ ΠΎ-
Π΄ΡΡΡΡ Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ [β1; 1] ΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ
ΠΎΡ β1 Π΄ΠΎ 1, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΡ ΡΠΎΡΠΊΡ ΠΎΡΡΠ΅Π·ΠΊΠ° [β1; 1]
ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ (ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ
ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ) Π²ΡΠ΅Π³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΡΡΠΌΡΡ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΡΡ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈ-
Π½Π°Ρ, ΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠΎΡΠΊΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ ΠΎΡΠ΄ΠΈ-
Π½Π°ΡΡ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ y = sin x ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ: y β [β1; 1].
ΠΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ: E (sin x) = [β1; 1].
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΠΌ, Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ sin x ΡΠ°Π²Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. ΠΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π°
ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠ° A, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ sin x ΡΠ°Π²Π½ΠΎ ΠΌΠΈΠ½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. ΠΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅
Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠ° B, ΡΠΎ Π΅ΡΡΡ
ΠΏΡΠΈ
ΠΏΠΎΡΡΠΎΠΌΡ Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π Β§ 13 Π±ΡΠ»ΠΎ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅, ΡΡΠΎ ΡΠΈΠ½ΡΡ β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ
k β Π»ΡΠ±ΠΎΠ΅ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ,
Π½Π°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π½Π° ΠΎΡΠΈ Oy Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ x = 0. Π’ΠΎΠ³Π΄Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅
y = sin 0 = 0, ΡΠΎ Π΅ΡΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = sin x ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ° ΠΎΡΠΈ Ox Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y = 0. ΠΠΎΡΡΠΎΠΌΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΠΊΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ x, ΠΏΡΠΈ
ΠΊΠΎΡΠΎΡΡΡ sin x, ΡΠΎ Π΅ΡΡΡ ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΒ
Π½ΠΎΡΡΠΈ, ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ. ΠΡΠΎ Π±ΡΠ΄Π΅Ρ ΡΠΎΠ³Π΄Π° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆ-
Π½ΠΎΡΡΠΈ Π±ΡΠ΄ΡΡ Π²ΡΠ±ΡΠ°Π½Ρ ΡΠΎΡΠΊΠΈ C ΠΈΠ»ΠΈ D, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ x = Οk, k β Z (ΡΠΌ. ΡΠΈΡ. 79).
ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠ½ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Ρ (ΡΠΎ Π΅ΡΡΡ ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ
Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°) Π² I ΠΈ II ΡΠ΅ΡΠ²Π΅ΡΡΡΡ (ΡΠΈΡ. 80). Π’Π°ΠΊΠΈΠΌ
ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, sin x > 0 ΠΏΡΠΈ Π²ΡΠ΅Ρ x β (0; Ο), Π° ΡΠ°ΠΊΠΆΠ΅, ΡΡΠΈΡΡΠ²Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄, ΠΏΡΠΈ Π²ΡΠ΅Ρ
x β (2Οk; Ο + 2Οk), k β Z.
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠ½ΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Ρ (ΡΠΎ Π΅ΡΡΡ ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡ-
ΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°) Π² III ΠΈ IV ΡΠ΅ΡΠ²Π΅ΡΡΡΡ , ΠΏΠΎΡΡΠΎ-
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ
Π£ΡΠΈΡΡΠ²Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ sin x Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T = 2Ο, Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Π΅Π΅ Π½Π° Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ Π½Π° Π»ΡΠ±ΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ
2Ο, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ Π½Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅
ΡΠΎ ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° x (x 2 > x 1 ) ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ (ΡΠΎ Π΅ΡΡΡ
sin x 2 > sin x 1 ), ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π½Π° ΡΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΡ sin x Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ. Π£ΡΠΈΡΡΠ²Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ sin x,
Π΄Π΅Π»Π°Π΅ΠΌ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΠΎΠ½Π° ΡΠ°ΠΊΠΆ Π΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ²
ΠΡΠ»ΠΈ x β (ΡΠΈΡ. 81, Π±), ΡΠΎ ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° x (x 2 > x 1 ) ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ
ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ (ΡΠΎ Π΅ΡΡΡ sin x 2 1 ), ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π½Π° ΡΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΡ sin x ΡΠ±ΡΠ²Π°Π΅Ρ. Π£ΡΠΈΡΡΠ²Π°Ρ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ sin x, Π΄Π΅Π»Π°Π΅ΠΌ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΠΎΠ½Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ±ΡΠ²Π°Π΅Ρ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ²
ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = sin x. Π£ΡΠΈΡΡΠ²Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠΎΠΉ
ΡΡΠ½ΠΊΡΠΈΠΈ (Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο), Π΄ ΠΎ ΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π° Π»ΡΠ±ΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ 2Ο, Π½Π° ΠΏΡΠΈΠΌΠ΅Ρ Π½Π°
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ [βΟ; Ο]. ΠΠ»Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠΎΡΠ΅ΠΊ Π³ΡΠ°ΡΠΈΠΊΠ° Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠ΅ΠΌ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ° β ΡΡΠΎ ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°
ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ 82 ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = sin x Π½Π°
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ [0; Ο]. Π£ΡΠΈΡΡΠ²Π°Ρ Π½Π΅ΡΠ΅ΡΠ½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ sin x (Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ), Π΄Π»Ρ
ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Π½Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ [βΟ; 0] ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°Π΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΊΡΠΈΠ²ΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡ Π½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΌΡ ΠΏΠΎΡΡΡΠΎΠΈΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊ Π½Π°
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ 2Ο, ΡΠΎ, ΡΡΠΈΡΡΠ²Π°Ρ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΠΈΠ½ΡΡΠ° (Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο),
ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΠΌ Π²ΠΈΠ΄ Π³ΡΠ°ΡΠΈΠΊΠ° Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΡΠΎ-
ΠΌΠ΅ΠΆΡΡΠΊΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ 2Ο (ΡΠΎ Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΈΠΌ ΠΏΠ°-
ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π³ΡΠ°ΡΠΈΠΊ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ ΠΡ Π½Π° 2Οk,
Π³Π΄Π΅ k β ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ).
ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ
Π Π° ΠΌ Π΅ Ρ Π° Π½ ΠΈ Π΅. Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΡΠΎΠΊΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ Π² ΠΌΠ° ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, ΡΠΈΠ·ΠΈΠΊΠ΅ ΠΈ ΡΠ΅Ρ Π½ΠΈΠΊΠ΅. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ,
ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ², ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΡΡΡΠ½Ρ, ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°, Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π² ΡΠ΅ΠΏΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΈ Ρ. ΠΏ.,
ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ Π·Π°Π΄Π°Π΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ y = A sin (ΟΡ + Ο). Π’Π° ΠΊΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ Π½Π°Π·ΡΠ²Π°ΡΡ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ
ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΠΌΠΈ. ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = A sin (Οx + Ο) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΈΠ· ΡΠΈΠ½ΡΡΠΎΠΈΠ΄Ρ y = sin Ρ ΡΠΆΠ°ΡΠΈΠ΅ΠΌ ΠΈΠ»ΠΈ ΡΠ°ΡΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π΅Π΅ Π²Π΄ΠΎΠ»Ρ
ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΠ΅ΠΉ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠ΅ Π½ΠΎΡΠΎΠΌ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ ΠΡ . Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ
Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t. Π’ΠΎΠ³Π΄Π° ΠΎΠ½ΠΎ Π·Π°Π΄Π°Π΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ y = A sin (Οt + Ο), Π³Π΄Π΅ Π β Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, Ο β ΡΠ°ΡΡΠΎΡΠ°, Ο β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ
ΡΠ°Π·Π°,
14.2. Π‘ΠΠΠΠ‘Π’ΠΠ Π€Π£ΠΠΠ¦ΠΠ y = cos x Π ΠΠ ΠΠ ΠΠ€ΠΠ
ΠΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅
ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΈΠ½ΡΡΠ° β ΡΡΠΎ Π°Π±ΡΡΠΈΡ-
ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ
(ΡΠΈΡ. 85). ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π°Π±ΡΡΠΈΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π΄Π»Ρ Π»Ρ-
Π±ΠΎΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ (Π² ΡΠΈΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎ
ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΡ ΡΠΎΡΠΊΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, Π²ΡΠ΅Π³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎ-
Π²Π΅ΡΡΠΈ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΡ ΠΏΡΡΠΌΡΡ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΡΡ ΠΎΡΠΈ
Π°Π±ΡΡΠΈΡΡ), ΡΠΎ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ y = cos x β
Π²ΡΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°. ΠΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
D (cos x) = R.
ΠΠ»Ρ ΡΠΎΡΠ΅ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π°Π±ΡΡΠΈΡΡΡ Π½Π°Ρ ΠΎ-
Π΄ΡΡΡΡ Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ [β1; 1] ΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π²ΡΠ΅ Π·Π½Π°ΡΠ΅-
Π½ΠΈΡ ΠΎΡ β1 Π΄ΠΎ 1, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΡ ΡΠΎΡΠΊΡ ΠΎΡΡΠ΅Π·ΠΊΠ° [β1; 1] ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ (ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ
Π²ΡΠ΅Π³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΡΡΠΌΡΡ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΡΡ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ, ΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ
ΡΠΎΡΠΊΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ Π°Π±ΡΡΠΈΡΡΡ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Ρ Π½ΠΎ, ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y = cos x:
y β [β1; 1]. ΠΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ: E (cos x) = [β1; 1]. ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΠΌ, Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ cos x ΡΠ°Π²Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. ΠΡΠΎ
Π·Π½Π° ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠ° A, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ
x = 2Οk, k β Z. ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ cos x ΡΠ°Π²Π½ΠΎ ΠΌΠΈΠ½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. ΠΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π°
ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆ Π½ΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠ° B, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ x = Ο + 2Οk, k β Z.
ΠΠ°ΠΊ Π±ΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π² Β§ 13, ΠΊΠΎΡΠΈΠ½ΡΡ β ΡΠ΅ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ : cos (βx) = cos x, ΠΏΠΎΡΡΠΎΠΌΡ Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ
ΠΡ. Π Β§ 13 Π±ΡΠ»ΠΎ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅, ΡΡΠΎ ΠΊΠΎΡΠΈΠ½ΡΡ β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ
T = 2Ο: cos (x + 2Ο) = cos x. Π’Π°ΠΊΠΈΠΌ ΠΎΠ± ΡΠ°Π·ΠΎΠΌ, ΡΠ΅ΡΠ΅Π· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ 2Ο Π²ΠΈΠ΄ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ cos x ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΡΡΡ.
ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y = cos 0 = 1. ΠΠ° ΠΎΡΠΈ Ox Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y = 0. ΠΠΎΡΡΠΎΠΌΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΠΊΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ x, ΠΏΡΠΈ
ΠΊΠΎΡΠΎΡΡΡ cos x, ΡΠΎ Π΅ΡΡΡ Π°Π±ΡΡΠΈΡΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ. ΠΡΠΎ Π±ΡΠ΄Π΅Ρ ΡΠΎΠ³Π΄Π° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ
ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π±ΡΠ΄ΡΡ Π²ΡΠ±ΡΠ°Π½Ρ ΡΠΎΡΠΊΠΈ C ΠΈΠ»ΠΈ D, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π°. ΠΠ°ΠΊ Π±ΡΠ»ΠΎ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ Π² Β§ 13, Π·Π½Π°ΡΠ΅Π½ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Ρ (ΡΠΎ Π΅ΡΡΡ Π°Π±ΡΡΠΈΡΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ
Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°) Π² I ΠΈ IV ΡΠ΅ΡΠ²Π΅ΡΡΡΡ (ΡΠΈΡ. 86). Π‘Π»Π΅Π΄ΠΎΠ²Π°-
ΡΠ΅Π»ΡΠ½ΠΎ, cos x > 0 ΠΏΡΠΈ x β (-Π/2; Π/2) Π° ΡΠ°ΠΊΠΆΠ΅, ΡΡΠΈΡΡΠ²Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄, ΠΏΡΠΈ Π²ΡΠ΅Ρ
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Ρ (ΡΠΎ Π΅ΡΡΡ Π°Π±ΡΡΠΈΡΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Ρ-
ΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°) Π²ΠΎ ΠΠ ΠΈ ΠΠΠ ΡΠ΅ΡΠ²Π΅ΡΡΡΡ ,
ΠΏΠΎΡΡΠΎΠΌΡ cos x
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ
Π£ΡΠΈΡΡΠ²Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ cos x (T = 2Ο), Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ
Π΅Π΅ Π½Π° Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ Π½Π° Π»ΡΠ±ΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ 2Ο, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ
Π½Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ [0; 2Ο].
ΠΡΠ»ΠΈ x β [0; Ο] (ΡΠΈΡ. 87, Π°), ΡΠΎ ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° x (x 2 > x 1 ) Π°Π±ΡΡΠΈΡΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ
ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ (ΡΠΎ Π΅ΡΡΡ cos x 2 1 ), ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π½Π° ΡΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΡ cos x ΡΠ±ΡΠ²Π°Π΅Ρ. Π£ΡΠΈΡΡΠ²Π°Ρ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ cos x, Π΄Π΅Π»Π°Π΅ΠΌ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΠΎΠ½Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ±ΡΠ²Π°Π΅Ρ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ² [2Οk; Ο + 2Οk], k β Z.
ΠΡΠ»ΠΈ x β [Ο; 2Ο] (ΡΠΈΡ. 87, Π±), ΡΠΎ ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° x (x 2 > x 1 ) Π°Π±-
ΡΡΠΈΡΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ (ΡΠΎ
Π΅ΡΡΡ cos x 2 >cos x 1 ), ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π½Π° ΡΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΡ cos x
Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ. Π£ΡΠΈΡΡΠ²Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ cos x, Π΄Π΅Π»Π°Π΅ΠΌ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ
ΠΎΠ½Π° Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ ΡΠ°ΠΊΠΆΠ΅ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ² [Ο + 2Οk; 2Ο + 2Οk], k β Z.
ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = cos x
Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠΎΠΌΡ, ΠΊΠ°ΠΊ Π±ΡΠ» ΠΏΠΎΡΡΡΠΎΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊ-
ΡΠΈΠΈ y = sin x. ΠΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = cos x ΠΌΠΎΠΆΠ½ΠΎ
ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ»ΡΡΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠ΅ΠΎΠ±-
ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = sin Ρ , ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ
ΠΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°ΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ°ΠΊ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ (ΡΠΈΡ. 88), ΠΎΡΠΌΠ΅ΡΠΈΠΌ Π½Π° Π½Π΅ΠΉ ΡΠΎΡΠΊΠΈ
ΠΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π½Π° ΡΠ΅ΠΌΡ: «Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° y=sinx, y=cosx».
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΌ ΡΠ»Π°ΠΉΠ΄Π°ΠΌ:
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π°: y=cosx ΠΈ y=sinx, ΠΈ ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΠΠΠΠ£ ΠΠΠΠ ΠΈΠΌ. Π Π€Π°Π±Π΅ΡΠΆΠ΅ ΠΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΠΎΡΡΠ΅Π½ΠΊΠΎΠ²Π° Π‘.Π‘. 2016 2016 Π³.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° 1. ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, 2. ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, 3. ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ. 4. ΡΠ΅ΡΠ½ΠΎΡΡΡ ΠΈΠ»ΠΈ Π½Π΅ΡΠ΅ΡΠ½ΠΎΡΡΡ, 5. ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΡΡΡ, 6. ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΡΡΡ, 7. Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΡ, 8. Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅.
7. Π€ΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΠΈ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π° Π½Π° Π²ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π». 8.ΠΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠ΅ 1, Π² ΡΠΎΡΠΊΠ΅ x= Ο/2 +2Οk, kΟ΅Z ΠΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠ΅ β1, Π² ΡΠΎΡΠΊΠ΅ x= 3Ο/2 +2Οk, kΟ΅Z
4. Π€ΡΠ½ΠΊΡΠΈΡ Ρ = cosx ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅ΡΠ½ΠΎΠΉ Ρ.ΠΊ. Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ cos(- x) = cos(x) (Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ). 5. ΠΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΡΡΡ. ΠΠ° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [ βΟ +2Οn; 2Οn] ΡΡΠ½ΠΊΡΠΈΡ y = cosx Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π° ΡΠ±ΡΠ²Π°Π΅Ρ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [2Οn ; Ο +2Οn ], nΟ΅Z 6. Π€ΡΠ½ΠΊΡΠΈΡ Ρ = cosx ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΉ, Ρ.ΠΊ. Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x Π²Π΅ΡΠ½ΠΎ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ β 1 β€ cos x β€ 1.
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² y=cosx, y=sinx
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = cos2x: 1. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ y = cosx 2. Π‘ΠΆΠ°ΡΡ Π² 2 ΡΠ°Π·Π° ΠΏΠΎ ΠΎΡΠΈ ΠΠ₯ ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = cos1/2x: 1. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ y = cosx 2. Π Π°ΡΡΡΠ½ΡΡΡ Π² 2 ΡΠ°Π·Π° ΠΏΠΎ ΠΎΡΠΈ ΠΠ₯
ΠΡΠΈΠΌΠ΅Ρ 1. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = sin 2x. Π Π΅ΡΠ΅Π½ΠΈΠ΅. k = 2; ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = f (kx) ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΈΠ· Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = f (x) Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΆΠ°ΡΠΈΡ ΠΊ ΠΎΡΠΈ Ρ Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ k.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = 2cosx: 1. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ y = cosx 2. Π£Π²Π΅Π»ΠΈΡΠΈΡΡ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π² 2 ΡΠ°Π·Π° ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = 1/2cosx: 1. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ y = cosx 2. Π£ΠΌΠ΅Π½ΡΡΠΈΡΡ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π² 2 ΡΠ°Π·Π°.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = sin(x + 2): 1. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ y = sinx. 2. Π‘Π΄Π²ΠΈΠ½ΡΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π° 2 Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²Π»Π΅Π²ΠΎ ΠΏΠΎ ΠΎΡΠΈ ΠΠ₯. ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = sin(x β 2): 1. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ y = sinx. 2. Π‘Π΄Π²ΠΈΠ½ΡΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π° 2 Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΠΏΡΠ°Π²ΠΎ ΠΏΠΎ ΠΎΡΠΈ ΠΠ₯.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = sinx + 2: 1. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ y = sinx. 2. Π‘Π΄Π²ΠΈΠ½ΡΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π° 2 Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²Π²Π΅ΡΡ ΠΏΠΎ ΠΎΡΠΈ Πy ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = sinx β 2: 1. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ y = sinx. 2. Π‘Π΄Π²ΠΈΠ½ΡΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π° 2 Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²Π½ΠΈΠ· ΠΏΠΎ ΠΎΡΠΈ Πy
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ y = β cosx: 1. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ y = cosx 2. ΠΡΠΏΠΎΠ»Π½ΠΈΡΡ Π·Π΅ΡΠΊΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΠ₯.
ΠΠΎΠΌΠ°ΡΠ½Π΅Π΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ y = cos(x + 2) y = sinx + 2 y = 1/3sinx y = 4 β cosx y = sin(x β 5) y = β 3cosx
ΠΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΡΠΎΡΠΌΠ°Ρ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°Π½ΠΈΡ
ΠΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΠ»Π΅ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π€ΠΠΠ‘ ΠΠ
ΠΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°: ΡΠ΅ΠΎΡΠΈΡ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°Π½ΠΈΡ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ
ΠΡΠ΅ΠΌ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ² Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ Β«ΠΠ½ΡΠΎΡΡΠΎΠΊΒ»
ΠΠΎΠΌΠ΅Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°: ΠΠ-351906
ΠΠ΅ Π½Π°ΡΠ»ΠΈ ΡΠΎ ΡΡΠΎ ΠΈΡΠΊΠ°Π»ΠΈ?
ΠΠ°ΠΌ Π±ΡΠ΄ΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½Ρ ΡΡΠΈ ΠΊΡΡΡΡ:
ΠΡΡΠ°Π²ΡΡΠ΅ ΡΠ²ΠΎΠΉ ΠΊΠΎΠΌΠΌΠ΅Π½ΡΠ°ΡΠΈΠΉ
ΠΠ²ΡΠΎΡΠΈΠ·ΡΠΉΡΠ΅ΡΡ, ΡΡΠΎΠ±Ρ Π·Π°Π΄Π°Π²Π°ΡΡ Π²ΠΎΠΏΡΠΎΡΡ.
Π£ΡΠΈΡΠ΅Π»Ρ ΠΎ ΠΠΠ: ΡΠ΅ΠΊΡΠ΅ΡΡ ΡΡΠΏΠ΅ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 11 ΠΌΠΈΠ½ΡΡ
ΠΠΈΠ½Π·Π΄ΡΠ°Π² Π²ΠΊΠ»ΡΡΠΈΠ» Π²Π°ΠΊΡΠΈΠ½Π°ΡΠΈΡ ΠΏΠΎΠ΄ΡΠΎΡΡΠΊΠΎΠ² ΠΎΡ ΠΊΠΎΠ²ΠΈΠ΄Π° Π² ΠΊΠ°Π»Π΅Π½Π΄Π°ΡΡ ΠΏΡΠΈΠ²ΠΈΠ²ΠΎΠΊ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΡ ΡΠΊΠΎΠ»Π°Ρ ΠΌΠΎΠ³ΡΡ ΠΏΠΎΡΠ²ΠΈΡΡΡΡ Β«ΡΠ»ΡΠΆΠ±Ρ ΠΏΡΠΈΠΌΠΈΡΠ΅Π½ΠΈΡΒ»
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΠΎΡΡΡΠΎΠΌΡΠΊΠ°Ρ ΠΎΠ±Π»Π°ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π»Π° ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΠΏΡΠΈΠ²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠ°Π΄ΡΠΎΠ²
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 2 ΠΌΠΈΠ½ΡΡΡ
Π§Π΅ΠΌ Π·Π°Π½ΡΡΡΡΡ Ρ Π΄Π΅ΡΡΠΌΠΈ Π² Π½ΠΎΠ²ΠΎΠ³ΠΎΠ΄Π½ΠΈΠ΅ ΠΏΡΠ°Π·Π΄Π½ΠΈΠΊΠΈ Π² ΠΠΎΡΠΊΠ²Π΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 4 ΠΌΠΈΠ½ΡΡΡ
ΠΡΡΠΈΠ½ ΠΏΠΎΡΡΡΠΈΠ» Π½Π΅ ΡΡΠΈΡΠ°ΡΡ Π²ΡΠΏΠ»Π°ΡΡ Π·Π° ΠΊΠ»Π°ΡΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ Π² ΡΡΠ΅Π΄Π½Π΅ΠΉ Π·Π°ΡΠΏΠ»Π°ΡΠ΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π£ΡΠΈΡΠ΅Π»ΡΠΌ ΠΏΡΠ΅Π΄Π»Π°Π³Π°ΡΡ 1,5 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π° ΡΡΠ±Π»Π΅ΠΉ Π·Π° ΠΏΠ΅ΡΠ΅Π΅Π·Π΄ Π² ΠΠ»Π°ΡΠΎΡΡΡ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΠΎΠ΄Π°ΡΠΎΡΠ½ΡΠ΅ ΡΠ΅ΡΡΠΈΡΠΈΠΊΠ°ΡΡ
ΠΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎΡΡΡ Π·Π° ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π»ΡΠ±ΡΡ ΡΠΏΠΎΡΠ½ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ², ΠΊΠ°ΡΠ°ΡΡΠΈΡ ΡΡ ΡΠ°ΠΌΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ, Π±Π΅ΡΡΡ Π½Π° ΡΠ΅Π±Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΠΈ, ΡΠ°Π·ΠΌΠ΅ΡΡΠΈΠ²ΡΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π½Π° ΡΠ°ΠΉΡΠ΅. ΠΠ΄Π½Π°ΠΊΠΎ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΡ ΡΠ°ΠΉΡΠ° Π³ΠΎΡΠΎΠ²Π° ΠΎΠΊΠ°Π·Π°ΡΡ Π²ΡΡΡΠ΅ΡΠΊΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π»ΡΠ±ΡΡ Π²ΠΎΠΏΡΠΎΡΠΎΠ², ΡΠ²ΡΠ·Π°Π½Π½ΡΡ Ρ ΡΠ°Π±ΠΎΡΠΎΠΉ ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΠ°ΠΉΡΠ°. ΠΡΠ»ΠΈ ΠΡ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ, ΡΡΠΎ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ ΡΠ°ΠΉΡΠ΅ Π½Π΅Π·Π°ΠΊΠΎΠ½Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΌΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ.
ΠΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΠΉΡΠ΅, ΡΠΎΠ·Π΄Π°Π½Ρ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΡΠ°ΠΉΡΠ° Π»ΠΈΠ±ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΡΠΌΠΈ ΡΠ°ΠΉΡΠ° ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π½Π° ΡΠ°ΠΉΡΠ΅ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄Π»Ρ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΡ. ΠΠ²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π° Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΈΡ Π·Π°ΠΊΠΎΠ½Π½ΡΠΌ Π°Π²ΡΠΎΡΠ°ΠΌ. Π§Π°ΡΡΠΈΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠ°ΠΉΡΠ° Π±Π΅Π· ΠΏΠΈΡΡΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° Π·Π°ΠΏΡΠ΅ΡΠ΅Π½ΠΎ! ΠΠ½Π΅Π½ΠΈΠ΅ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ Ρ ΡΠΎΡΠΊΠΎΠΉ Π·ΡΠ΅Π½ΠΈΡ Π°Π²ΡΠΎΡΠΎΠ².
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΎΠ½Π»Π°ΠΉΠ½
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΎΠ½Π»Π°ΠΉΠ½.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΡΠΎΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ Π²Π°ΠΌ ΡΠ΅ΡΠΈΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. ΠΡΠΎΠ³ΡΠ°ΠΌΠΌΠ° Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅ ΠΏΡΠΎΡΡΠΎ Π΄Π°ΡΡ ΠΎΡΠ²Π΅Ρ Π·Π°Π΄Π°ΡΠΈ, ΠΎΠ½Π° ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠΎΡΡΠ½Π΅Π½ΠΈΡΠΌΠΈ, Ρ.Π΅. ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°Π΅Ρ ΠΏΡΠΎΡΠ΅ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΎΡΠ²Π΅ΡΠ°.
ΠΠ°Π½Π½Π°Ρ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΠ»Π΅Π·Π½Π° ΡΡΠ°ΡΠΈΠΌΡΡ ΡΡΠ°ΡΡΠΈΡ ΠΊΠ»Π°ΡΡΠΎΠ² ΠΎΠ±ΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΠΊΠΎΠ» ΠΏΡΠΈ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ΅ ΠΊ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΠΌ ΡΠ°Π±ΠΎΡΠ°ΠΌ ΠΈ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΠΌ, ΠΏΡΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Π·Π½Π°Π½ΠΈΠΉ ΠΏΠ΅ΡΠ΅Π΄ ΠΠΠ, ΡΠΎΠ΄ΠΈΡΠ΅Π»ΡΠΌ Π΄Π»Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΈΡ Π·Π°Π΄Π°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΈ Π°Π»Π³Π΅Π±ΡΠ΅. Π ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π²Π°ΠΌ ΡΠ»ΠΈΡΠΊΠΎΠΌ Π½Π°ΠΊΠ»Π°Π΄Π½ΠΎ Π½Π°Π½ΠΈΠΌΠ°ΡΡ ΡΠ΅ΠΏΠ΅ΡΠΈΡΠΎΡΠ° ΠΈΠ»ΠΈ ΠΏΠΎΠΊΡΠΏΠ°ΡΡ Π½ΠΎΠ²ΡΠ΅ ΡΡΠ΅Π±Π½ΠΈΠΊΠΈ? ΠΠ»ΠΈ Π²Ρ ΠΏΡΠΎΡΡΠΎ Ρ ΠΎΡΠΈΡΠ΅ ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Π±ΡΡΡΡΠ΅Π΅ ΡΠ΄Π΅Π»Π°ΡΡ Π΄ΠΎΠΌΠ°ΡΠ½Π΅Π΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΈΠ»ΠΈ Π°Π»Π³Π΅Π±ΡΠ΅? Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π²Ρ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π½Π°ΡΠΈΠΌΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ°ΠΌΠΈ Ρ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΡΠ²ΠΎΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΈ/ΠΈΠ»ΠΈ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ²ΠΎΠΈΡ ΠΌΠ»Π°Π΄ΡΠΈΡ Π±ΡΠ°ΡΡΠ΅Π² ΠΈΠ»ΠΈ ΡΠ΅ΡΡΡΡ, ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΡΠΎΠ²Π΅Π½Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ΅ΡΠ°Π΅ΠΌΡΡ Π·Π°Π΄Π°Ρ ΠΏΠΎΠ²ΡΡΠ°Π΅ΡΡΡ.
ΠΠ΅ΠΌΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΎΡΠΈΠΈ.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ cos(Ρ ) = Π°
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ cos x = Π°, Π³Π΄Π΅ \( |a| \leqslant 1 \), ΠΈΠΌΠ΅Π΅Ρ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ \( 0 \leqslant x \leqslant \pi \) ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ. ΠΡΠ»ΠΈ \( a \geqslant 0 \), ΡΠΎ ΠΊΠΎΡΠ΅Π½Ρ Π·Π°ΠΊΠ»ΡΡΡΠ½ Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ \( \left[ 0; \; \frac<\pi> <2>\right] \); Π΅ΡΠ»ΠΈ a
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ sin(Ρ ) = Π°
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ tg(Ρ ) = Π°
ΠΠ· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ tg x ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π»ΡΠ±ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΠΎΡΡΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ tg x = Π° ΠΈΠΌΠ΅Π΅Ρ ΠΊΠΎΡΠ½ΠΈ ΠΏΡΠΈ Π»ΡΠ±ΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ Π°.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΡΡΠ΅ Π±ΡΠ»ΠΈ Π²ΡΠ²Π΅Π΄Π΅Π½Ρ ΡΠΎΡΠΌΡΠ»Ρ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ sin(x) = a, cos(x) = Π°, tg(x) = Π°. Π ΡΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅ΠΈΠΈΡΠΌ ΡΠ²ΠΎΠ΄ΡΡΡΡ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΡΠ°ΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΎΡΠΌΡΠ» ΠΈ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΠ²ΠΎΠ΄ΡΡΠΈΠ΅ΡΡ ΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° a sin(x) + b cos(x) = c
ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠΎΡΠΌΡΠ»Ρ \( \sin(x) = 2\sin\frac
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΠΈΠ΄Π° a sin(x) + b cos(x) = c, ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΡΡ
\( a \neq 0, \; b \neq 0, \; c \neq 0, \; c^2 \leqslant b^2+c^2 \) ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π°.
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π° \( \sqrt \):
Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ 4 sin(x) + 3 cos(x) = 5
ΠΠ΄Π΅ΡΡ a = 4, b = 3, \( \sqrt = 5 \). ΠΠΎΠ΄Π΅Π»ΠΈΠΌ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π° 5:
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΠ΅ΡΠ°Π΅ΠΌΡΠ΅ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ
ΠΠ½ΠΎΠ³ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΏΡΠ°Π²Π°Ρ ΡΠ°ΡΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΠ΅ΡΠ°ΡΡΡΡ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΡ Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ.