ΠΠ°ΠΊ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ Π΄Π»Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ y ΠΎΡ x, Π³Π΄Π΅ x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° y β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π·Π½Π°ΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ , ΡΠΎ Π΅ΡΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ Π² ΡΠΎΡΠΌΡΠ»Π΅.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ, ΡΠΎ Π΅ΡΡΡ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y = xΒ² β ΡΡΠΎ Π²ΡΠ΅ ΡΠΈΡΠ»Π° Π±ΠΎΠ»ΡΡΠ΅ Π»ΠΈΠ±ΠΎ ΡΠ°Π²Π½ΡΠ΅ Π½ΡΠ»Ρ. ΠΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π²ΠΎΡ ΡΠ°ΠΊ: Π (Ρ): Ρ β₯ 0.
ΠΠΎΠ½ΡΡΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ y = f(x). Π‘Π°ΠΌΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), Π³Π΄Π΅ x β ΡΡΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ, Π° y β Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π΄Π°Π½Π½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ.
ΠΡΠΎΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ, Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, ΠΏΡΠΎΡΡΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² Π² ΡΡΠ½ΠΊΡΠΈΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π° Π²ΠΌΠ΅ΡΡΠΎ x.
ΠΠ»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° Π²ΠΎΠ·ΡΠΌΡΠΌ ΡΠ°ΠΌΡΡ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ y = x.
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π°ΠΌ Π½Π΅ ΠΏΡΠΈΠ΄ΡΡΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΡΠ°Π²Π½Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Ρ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ Π½Π°ΡΠ΅Π³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ° Π°Π±ΡΡΠΈΡΡΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π° ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ΅.
ΠΡΠ»ΠΈ ΠΌΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΊ Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΎΡΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ, ΡΠΎ Ρ Π½Π°Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ. ΠΠ½Π°ΡΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΠ°Π΄ΠΏΠΈΡΡ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ y = x β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ°. Π‘ΡΠ°Π²ΠΈΡΡ Π½Π°Π΄ΠΏΠΈΡΡ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΡΠ΄ΠΎΠ±Π½ΠΎ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ.
ΠΠ°ΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½Π° Π² ΠΎΠ±Π΅ ΡΡΠΎΡΠΎΠ½Ρ. Π₯ΠΎΡΡ ΠΌΡ ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ ΡΠ°ΡΡΡ ΠΏΡΡΠΌΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π° ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠ°Π»Π°Ρ ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΆΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x):
Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ Π»ΠΈΠ±ΠΎ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ. Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ΄ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΊΡΡΡΠ΅ΠΌΡΠΌ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅. Π’ΠΎΡΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π΅ΡΠ»ΠΈ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π° Π΅ΡΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΠΌΠΏΡΠΎΡΠ° β ΠΏΡΡΠΌΠ°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠ°ΠΊΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ, ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π΄ΠΎ ΡΡΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ ΠΏΡΠΈ Π½Π΅ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΌ ΡΠ΄Π°Π»Π΅Π½ΠΈΠΈ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌ ΠΈΡ ΠΎΡΡΡΠΊΠ°Π½ΠΈΡ Π²ΡΠ΄Π΅Π»ΡΡΡ ΡΡΠΈ Π²ΠΈΠ΄Π° Π°ΡΠΈΠΌΠΏΡΠΎΡ: Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅, Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠ΅, Π½Π°ΠΊΠ»ΠΎΠ½Π½ΡΠ΅.
Π€ΡΠ½ΠΊΡΠΈΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π° Π² ΡΠΎΡΠΊΠ΅ k, Π΅ΡΠ»ΠΈ ΠΏΡΠ΅Π΄Π΅Π» ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅:
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f(x) Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅ x = a, ΡΠΎ Π³ΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ f(x) ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·ΡΡΠ² Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΡΠ»ΠΈ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π΅Π·Π½Π°ΠΊΠΎΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π·Π°ΡΠ°Π½Π΅Π΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π²ΠΈΠ΄ Π³ΡΠ°ΡΠΈΠΊΠ°, ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΡ Π΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ½Π° ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΈ ΠΏΡΠΈΡΡΡΠΏΠΈΡΡ ΠΊ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΊΠ°ΠΌ.
Π‘Ρ Π΅ΠΌΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
Π£ Π½Π°Ρ Π΅ΡΡΡ ΠΎΡΠ»ΠΈΡΠ½ΡΠ΅ ΠΊΡΡΡΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΠΊΠΎΠ² Ρ 1 ΠΏΠΎ 11 ΠΊΠ»Π°ΡΡΡ!
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ .
ΠΠ°Π΄Π°ΡΠ° 1. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ°Π΄Π°ΡΠ° 2. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»ΠΈΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°, ΡΠ΄Π²ΠΈΠ½ΡΡΠ°Ρ Π½Π° 3 Π²ΠΏΡΠ°Π²ΠΎ ΠΏΠΎ x ΠΈ Π½Π° 2 Π²Π²Π΅ΡΡ
ΠΏΠΎ y ΠΈ ΡΠ°ΡΡΡΠ½ΡΡΠ°Ρ Π² 10 ΡΠ°Π· ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΉ ΡΠ°ΡΡΠΈ β ΠΏΠΎΠ»Π΅Π·Π½ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ², ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΠ΅Π»ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½.
ΠΠ°Π΄Π°ΡΠ° 3. ΠΠΎ Π²ΠΈΠ΄Ρ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΠ±ΡΠ΅Π³ΠΎ Π²ΠΈΠ΄Π° ΡΡΠ½ΠΊΡΠΈΠΈ y = ax2 + bx + c.
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ a, b ΠΈ c ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Oy β c = 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b > 0.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ ΠΎΡΠΈ Ox ΠΎΡΡΡΡΠΉ, B = 0 β Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ°Π΄Π°ΡΠ° 5. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎ Π΄ΡΠΎΠ±Π½ΠΎ-ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ D(y): x β 4; x β 0.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ: 3, 2, 6.
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ².
ΠΠ΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ: x = 0, x = 4.
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ Ρ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ 1. ΠΠ½Π°ΡΠΈΡ, y = 1 β Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ°.
ΠΠΎΡ ΡΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ:
ΠΠ°Π΄Π°ΡΠ° 6. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ:
Π±)
Π³)
Π΄)
ΠΠΎΠ³Π΄Π° ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΠΈΠ· ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π² ΠΏΠΎΡΡΠ΄ΠΊΠ΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ.
Π°)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ° f(x) + a.
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 1:
Π±)
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 2:
Π³)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ°
Π Π°ΡΡΡΠ³ΠΈΠ²Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² 2 ΡΠ°Π·Π° ΠΎΡ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π΄)
Π§ΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΠΎΡΡΠ΄ΠΎΠΊ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ: ΡΠ½Π°ΡΠ°Π»Π° ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ, Π·Π°ΡΠ΅ΠΌ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ, Π° ΡΠΆΠ΅ ΠΏΠΎΡΠΎΠΌ ΠΌΠ΅Π½ΡΠ΅ΠΌ Π·Π½Π°ΠΊ. Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎ Π²ΡΠ΅ΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² ΡΠ΅Π»ΠΎΠΌ, Π²ΡΠ½Π΅ΡΠ΅ΠΌ Π΄Π²ΠΎΠΉΠΊΡ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ Π² ΠΌΠΎΠ΄ΡΠ»Π΅.
Π‘ΠΆΠΈΠΌΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² Π΄Π²Π° ΡΠ°Π·Π° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π»Π΅Π²ΠΎ Π½Π° 1/2 Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
ΠΡΡΠ°ΠΆΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ
Π£ΠΌΠ΅Π½ΠΈΠ΅ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π½Π° ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. ΠΡΠΎ ΠΎΠ΄Π½Π° ΠΈΠ· ΠΏΠ΅ΡΠ²ΡΡ ΡΠ΅ΠΌ ΠΊΡΡΡΠ° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π² Π²ΡΠ·Π΅. ΠΡΠΎ Π½Π°ΡΡΠΎΠ»ΡΠΊΠΎ Π²Π°ΠΆΠ½Π°Ρ ΡΠ΅ΠΌΠ°, ΡΡΠΎ ΠΌΡ Π² ΠΠΠ-Π‘ΡΡΠ΄ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΠΎ Π½Π΅ΠΉ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Ρ Π΄Π»Ρ ΡΡΠ°ΡΡΠ΅ΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΠΎΠ² ΠΈ ΡΡΠΈΡΠ΅Π»Π΅ΠΉ, Π² ΠΠΎΡΠΊΠ²Π΅ ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½. Π ΡΠ°ΡΡΠΎ ΡΡΠ°ΡΡΠ½ΠΈΠΊΠΈ Π³ΠΎΠ²ΠΎΡΡΡ: Β«ΠΠ°Π»Ρ, ΡΡΠΎ ΠΌΡ Π½Π΅ Π·Π½Π°Π»ΠΈ ΡΡΠΎΠ³ΠΎ ΡΠ°Π½ΡΡΠ΅Β».
ΠΠΎ ΡΡΠΎ Π½Π΅ Π²ΡΠ΅. ΠΠΌΠ΅Π½Π½ΠΎ Ρ ΠΏΠΎΠ½ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π½Π°ΡΠΈΠ½Π°Π΅ΡΡΡ Π½Π°ΡΡΠΎΡΡΠ°Ρ, Β«Π²Π·ΡΠΎΡΠ»Π°ΡΒ» ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°. ΠΠ΅Π΄Ρ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅, ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅, Π΄ΡΠΎΠ±ΠΈ ΠΈ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΈ β ΡΡΠΎ Π²ΡΠ΅-ΡΠ°ΠΊΠΈ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΠΊΠ°. ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ β ΡΡΠΎ Π°Π»Π³Π΅Π±ΡΠ°. Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° β Π½Π°ΡΠΊΠ° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎ ΡΠΈΡΠ»Π°Ρ , Π½ΠΎ ΠΈ ΠΎ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½. Π―Π·ΡΠΊ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΏΠΎΠ½ΡΡΠ΅Π½ ΠΈ ΡΠΈΠ·ΠΈΠΊΡ, ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³Ρ, ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΡΡ. Π, ΠΊΠ°ΠΊ ΡΠΊΠ°Π·Π°Π» ΠΠ°Π»ΠΈΠ»Π΅ΠΎ ΠΠ°Π»ΠΈΠ»Π΅ΠΉ, Β«ΠΠ½ΠΈΠ³Π° ΠΏΡΠΈΡΠΎΠ΄Ρ Π½Π°ΠΏΠΈΡΠ°Π½Π° Π½Π° ΡΠ·ΡΠΊΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈΒ».
Π’ΠΎΡΠ½Π΅Π΅, ΠΠ°Π»ΠΈΠ»Π΅ΠΎ ΠΠ°Π»ΠΈΠ»Π΅ΠΉ ΡΠΊΠ°Π·Π°Π» ΡΠ°ΠΊ:Β«ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° Π΅ΡΡΡ Π°Π»ΡΠ°Π²ΠΈΡ, ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΠΎΡΠΏΠΎΠ΄Ρ Π½Π°ΡΠ΅ΡΡΠ°Π» ΠΡΠ΅Π»Π΅Π½Π½ΡΡΒ».
Π’Π΅ΠΌΡ Π΄Π»Ρ ΠΏΠΎΠ²ΡΠΎΡΠ΅Π½ΠΈΡ:
1. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ½Π°ΠΊΠΎΠΌΠ°Ρ Π·Π°Π΄Π°ΡΠ°! Π’Π°ΠΊΠΈΠ΅ Π²ΡΡΡΠ΅ΡΠ°Π»ΠΈΡΡ Π² Π²Π°ΡΠΈΠ°Π½ΡΠ°Ρ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. Π’Π°ΠΌ ΠΎΠ½ΠΈ ΡΡΠΈΡΠ°Π»ΠΈΡΡ ΡΠ»ΠΎΠΆΠ½ΡΠΌΠΈ. ΠΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ Π½ΠΈΡΠ΅Π³ΠΎ Π·Π΄Π΅ΡΡ Π½Π΅Ρ.
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΠΏΡΡΠΌΠ°Ρ Ρ Π²ΡΠΊΠΎΠ»ΠΎΡΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ
2. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»ΠΈΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°, ΡΠ΄Π²ΠΈΠ½ΡΡΠ°Ρ Π½Π° 3 Π²ΠΏΡΠ°Π²ΠΎ ΠΏΠΎ x ΠΈ Π½Π° 2 Π²Π²Π΅ΡΡ ΠΏΠΎ y ΠΈ ΡΠ°ΡΡΡΠ½ΡΡΠ°Ρ Π² 10 ΡΠ°Π· ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΉ ΡΠ°ΡΡΠΈ β ΠΏΠΎΠ»Π΅Π·Π½ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ, ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΠΉ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ², ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΠ΅Π»ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½ Π² Π·Π°Π΄Π°ΡΠ°Ρ Π½Π° ΡΠΈΡΠ»Π° ΠΈ ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ²Π°. ΠΠ½ Π²ΡΡΡΠ΅ΡΠΈΡΡΡ Π²Π°ΠΌ ΡΠ°ΠΊΠΆΠ΅ Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΊΡΡΡΠ΅, ΠΊΠΎΠ³Π΄Π° ΠΏΡΠΈΠ΄Π΅ΡΡΡ Π±ΡΠ°ΡΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Ρ.
3. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ½ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΈΠ· Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°ΡΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π² 2 ΡΠ°Π·Π°, ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΠΈ ΠΈ ΡΠ΄Π²ΠΈΠ³ΠΎΠΌ Π½Π° 1 Π²Π²Π΅ΡΡ ΠΏΠΎ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΠΈ
4. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ»Π°Π²Π½ΠΎΠ΅ β ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½Π°Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ. ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅:
ΠΠ΅ΠΉΡΡΠ²ΡΠ΅ΠΌ ΠΏΠΎ ΠΏΠΎΡΡΠ΄ΠΊΡ:
1) ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y=sinx ΡΠ΄Π²ΠΈΠ½Π΅ΠΌ Π½Π° Π²Π»Π΅Π²ΠΎ;
2) ΡΠΎΠΆΠΌΠ΅ΠΌ Π² 2 ΡΠ°Π·Π° ΠΏΠΎ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΠΈ,
3) ΡΠ°ΡΡΡΠ½Π΅ΠΌ Π² 3 ΡΠ°Π·Π° ΠΏΠΎ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΠΈ,
4) ΡΠ΄Π²ΠΈΠ½Π΅ΠΌ Π½Π° 1 Π²Π²Π΅ΡΡ
Π‘Π΅ΠΉΡΠ°Ρ ΠΌΡ ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π΄ΡΠΎΠ±Π½ΠΎ-ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. Π§ΡΠΎΠ±Ρ Π»ΡΡΡΠ΅ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ ΠΌΡ ΡΡΠΎ Π΄Π΅Π»Π°Π΅ΠΌ, ΡΠΈΡΠ°ΠΉΡΠ΅ ΡΡΠ°ΡΡΡ Β«ΠΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ. ΠΡΠΈΠΌΠΏΡΠΎΡΡΒ».
5. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ².
ΠΡΡΠΌΠ°Ρ x = 0 (ΠΎΡΡ Y) β Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ° ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠΈΠΌΠΏΡΠΎΡΠ° β ΠΏΡΡΠΌΠ°Ρ, ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΉ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ Π±Π»ΠΈΠ·ΠΊΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½ΠΎ Π½Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ Π΅Π΅ ΠΈ Π½Π΅ ΡΠ»ΠΈΠ²Π°Π΅ΡΡΡ Ρ Π½Π΅ΠΉ (ΡΠΌΠΎΡΡΠΈ ΡΠ΅ΠΌΡ Β«ΠΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ. ΠΡΠΈΠΌΠΏΡΠΎΡΡΒ»)
ΠΡΡΡ Π»ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ Ρ Π½Π°ΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ? Π§ΡΠΎΠ±Ρ Π²ΡΡΡΠ½ΠΈΡΡ ΡΡΠΎ, ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊ Π²Π΅Π΄Π΅Ρ ΡΠ΅Π±Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΠΊΠΎΠ³Π΄Π° x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ.
Π Π°ΡΠΊΡΠΎΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ. ΠΡΡΠΌΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ Π°ΡΠΈΠΌΠΏΡΠΎΡΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
6. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎ Π΄ΡΠΎΠ±Π½ΠΎ-ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ: ΡΠΎΡΠΊΠΈ β 3, 2, 6.
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ².
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ Ρ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ 1. ΠΠ½Π°ΡΠΈΡ, β Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ°.
ΠΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ β ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ².
7. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ Π±Π»ΠΈΠ·ΠΊΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡΡ ΠΊ Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ΅
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ, ΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π²Π΅Π΄Π΅Ρ ΡΠ΅Π±Ρ ΠΊΠ°ΠΊ ΠΡΠΎ ΠΌΡ ΠΈ Π²ΠΈΠ΄ΠΈΠΌ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅:
ΠΠΎΡ ΠΌΡ ΠΈ ΠΏΠΎΡΡΡΠΎΠΈΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠΌΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΉ. Π’Π΅ΠΏΠ΅ΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ!
8. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ β ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ x ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ ΠΏΡΠΈ (ΠΊΠΎΠ³Π΄Π° Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ), Π° ΡΠ°ΠΊΠΆΠ΅ Π² ΡΠΎΡΠΊΠ°Ρ , Π³Π΄Π΅ ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ
ΠΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ cos x ΡΠ°Π²Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΠΎ ΠΏΡΠΈ
9. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΠΏΡΠΈ ΠΠ½Π° ΡΠ΅ΡΠ½Π°Ρ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡΡ Π½Π΅ΡΠ΅ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ ΠΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ β Π² ΡΠΎΡΠΊΠ°Ρ , Π³Π΄Π΅ ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ ΠΏΡΠΈ
ΠΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ, ΡΡΠΎ Π΅ΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ, ΡΠΎ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΡΡΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½ΠΎΡΠΈΡ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Β«ΠΠ΅ΡΠ²ΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π°Β».
Π ΠΊΠ°ΠΊ ΠΆΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ? ΠΠ°, Π½Π°ΠΊΠΎΠ½Π΅Ρ-ΡΠΎ ΠΌΡ Π΄ΠΎ Π½Π΅Π΅ Π΄ΠΎΠ±ΡΠ°Π»ΠΈΡΡ. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠΎΡΠ½ΠΎ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ°Ρ ΠΎΠ΄ΠΈΡΡ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ .
10. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ β Π²ΡΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ
Π€ΡΠ½ΠΊΡΠΈΡ Π½Π΅ΡΠ΅ΡΠ½Π°. ΠΠ΅ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠΈ x=0 Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ. ΠΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Ρ, ΠΏΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Ρ.
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ.
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ,
Π ΡΠΎΡΠΊΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ Β«ΠΌΠΈΠ½ΡΡΠ°Β» Π½Π° Β«ΠΏΠ»ΡΡΒ», β ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
Π ΡΠΎΡΠΊΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ Β«ΠΏΠ»ΡΡΠ°Β» Π½Π° Β«ΠΌΠΈΠ½ΡΡΒ», β ΡΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ x=2 ΠΈ ΠΏΡΠΈ x=-2.
ΠΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ΄ΠΎΠ±Π½ΠΎ ΡΡΡΠΎΠΈΡΡ ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ, ΠΈΠ»ΠΈ ΡΡ Π΅ΠΌΠ΅. ΠΠΎΠΌΠ½ΠΈΡΠ΅, Π²Ρ ΠΈΠ·ΡΡΠ°Π»ΠΈ Π΅Π΅ Π² ΡΠΊΠΎΠ»Π΅?
ΠΠ±ΡΠ°Ρ ΡΡ Π΅ΠΌΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
1. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
2. ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
3. Π§Π΅ΡΠ½ΠΎΡΡΡ β Π½Π΅ΡΠ΅ΡΠ½ΠΎΡΡΡ (Π΅ΡΠ»ΠΈ Π΅ΡΡΡ)
4. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ (Π΅ΡΠ»ΠΈ Π΅ΡΡΡ)
5. ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ)
6. ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ, Π½Π° ΠΊΠΎΡΠΎΡΡΡ ΠΎΠ½Π° ΡΡΡΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π° ΠΈΠ»ΠΈ ΡΡΡΠΎΠ³ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°).
7. ΠΡΠΈΠΌΠΏΡΠΎΡΡ (Π΅ΡΠ»ΠΈ Π΅ΡΡΡ).
8. ΠΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ
9. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ
10. ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ. Π’ΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ .
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ
8 ΠΊΠ»Π°ΡΡ, 9 ΠΊΠ»Π°ΡΡ, ΠΠΠ/ΠΠΠ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Β«yΒ» ΠΎΡ Β«xΒ», ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ Β«xΒ» ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Β«yΒ» β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠ³Π΄Π° Π²ΠΌΠ΅ΡΡΠΎ Β«xΒ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΡΠ΅ Π±ΡΡΡΡΠ΅Π΅ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΡΠ΅ΠΌΠ΅ ΠΈ Π½Π°ΡΡΠΈΡΡΡΡ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠΊΠΎΠ»Π΅ Skysmart.
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π·Π°Π΄Π°Π΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ y = ax 2 + bx + c, Π³Π΄Π΅ x ΠΈ y β ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅, a, b, c β Π·Π°Π΄Π°Π½Π½ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ β a β 0. Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅:
ΠΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ β ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΠΈΠ΄ Π΄Π»Ρ y = x 2 :
ΠΡΠ»ΠΈ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ ΡΡ ΠΆΠ΅ ΡΠΎΡΠΌΡ, ΠΊΠ°ΠΊ y = x 2 ΠΏΡΠΈ Π»ΡΠ±ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ².
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = βx 2 Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΠ½ΡΡΠ°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°:
ΠΠ°ΡΠΈΠΊΡΠΈΡΡΠ΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π±Π°Π·ΠΎΠ²ΡΡ ΡΠΎΡΠ΅ΠΊ Π² ΡΠ°Π±Π»ΠΈΡΠ΅:
ΠΠΎΡΠΌΠΎΡΡΠ΅Π² Π½Π° ΠΎΠ±Π° Π³ΡΠ°ΡΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ ΠΈΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΠ₯. ΠΡΠΌΠ΅ΡΠΈΠΌ Π²Π°ΠΆΠ½ΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΈ ΡΠ»ΡΡΠ°Ρ:
ΠΡΠ»ΠΈ a > 0, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΠΊΠ°ΠΊ-ΡΠΎ ΡΠ°ΠΊ:
0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>
ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ Π²ΡΡΠ΅ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ½ΠΎ, ΡΡΠΎ Π·Π½Π°Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠ²Π΅ΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΠΈ Π·Π½Π°ΠΊ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°, Ρ Π½Π°Ρ Π΅ΡΡΡ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΠΊΠ°ΠΊ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΡΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ:
ΠΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ β ΠΏΡΡΠΌΠ°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ OY.
Π§ΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ, Π½Π°ΠΌ Π½ΡΠΆΠ½Π° ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΡ OY. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π°Π±ΡΡΠΈΡΡΠ° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΎΡΠΈ OY ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ y = ax 2 + bx + c Ρ ΠΎΡΡΡ OY, Π½ΡΠΆΠ½ΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΌΠ΅ΡΡΠΎ Ρ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π½ΠΎΠ»Ρ: y(0) = c. Π’ΠΎ Π΅ΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ Π±ΡΠ΄ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ: (0; c).
ΠΠ° ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π½ΡΠΉ ΡΠΏΠΎΡΠΎΠ± ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ±ΡΠ°ΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ Π·Π°Π΄Π°Π½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ y = ax 2 + bx + c.
ΠΠ°ΠΊ ΡΡΡΠΎΠΈΠΌ:
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ ΠΠ₯. Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ, ΡΠ΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΠ°ΠΊ ΡΡΡΠΎΠΈΠΌ:
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ y = (x + a) Γ (x + b)
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΏΡΠΈΠΌΠ΅Ρ: y = (x β 2) Γ (x + 1).
ΠΠ°ΠΊ ΡΡΡΠΎΠΈΠΌ:
ΠΠ°Π½Π½ΡΠΉ Π²ΠΈΠ΄ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π±ΡΡΡΡΠΎ Π½Π°ΠΉΡΠΈ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ:
(x β 2) Γ (x + 1) = 0, ΠΎΡΡΡΠ΄Π° Ρ β = 2, Ρ β = β1.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ:
ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ OY:
Ρ = ab = (β2) Γ (1) = β2 ΠΈ Π΅ΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½Π°Ρ.
ΠΡΠΌΠ΅ΡΠΈΠΌ ΡΡΠΈ ΡΠΎΡΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΏΠ»Π°Π²Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ.
6 Π»ΡΡΡΠΈΡ ΡΠ΅ΡΠ²ΠΈΡΠΎΠ² Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ ΠΎΠ½Π»Π°ΠΉΠ½
Π ΡΠΎΠΆΠ°Π»Π΅Π½ΠΈΡ, Π½Π΅ Π²ΡΠ΅ ΡΡΡΠ΄Π΅Π½ΡΡ ΠΈ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΈ Π·Π½Π°ΡΡ ΠΈ Π»ΡΠ±ΡΡ Π°Π»Π³Π΅Π±ΡΡ, Π½ΠΎ Π³ΠΎΡΠΎΠ²ΠΈΡΡ Π΄ΠΎΠΌΠ°ΡΠ½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΡ, ΡΠ΅ΡΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΠ΅ ΠΈ ΡΠ΄Π°Π²Π°ΡΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Ρ ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡΡΡ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ. ΠΡΠΎΠ±Π΅Π½Π½ΠΎ ΡΡΡΠ΄Π½ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΠΌ Π΄Π°ΡΡΡΡ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ: Π΅ΡΠ»ΠΈ Π³Π΄Π΅-ΡΠΎ ΡΡΠΎ-ΡΠΎ Π½Π΅ ΠΏΠΎΠ½ΡΠ», Π½Π΅ Π΄ΠΎΡΡΠΈΠ», ΡΠΏΡΡΡΠΈΠ» β ΠΎΡΠΈΠ±ΠΊΠΈ Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½Ρ. ΠΠΎ ΠΊΠΎΠΌΡ ΠΆΠ΅ Ρ ΠΎΡΠ΅ΡΡΡ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΠΏΠ»ΠΎΡ ΠΈΠ΅ ΠΎΡΠ΅Π½ΠΊΠΈ?
ΠΠ΅ ΠΆΠ΅Π»Π°Π΅ΡΠ΅ ΠΏΠΎΠΏΠΎΠ»Π½ΠΈΡΡ ΠΊΠΎΠ³ΠΎΡΡΡ Ρ Π²ΠΎΡΡΠΈΡΡΠΎΠ² ΠΈ Π΄Π²ΠΎΠ΅ΡΠ½ΠΈΠΊΠΎΠ²? ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Ρ Π²Π°Ρ Π΅ΡΡΡ 2 ΠΏΡΡΠΈ: Π·Π°ΡΠ΅ΡΡΡ Π·Π° ΡΡΠ΅Π±Π½ΠΈΠΊΠΈ ΠΈ Π²ΠΎΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΏΡΠΎΠ±Π΅Π»Ρ Π·Π½Π°Π½ΠΈΠΉ Π»ΠΈΠ±ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π²ΠΈΡΡΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΠΎΠΌΠΎΡΠ½ΠΈΠΊΠΎΠΌ β ΡΠ΅ΡΠ²ΠΈΡΠΎΠΌ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ. Π‘ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΠ»ΠΈ Π±Π΅Π·. Π‘Π΅Π³ΠΎΠ΄Π½Ρ ΠΌΡ ΠΏΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΠΌ Π²Π°Ρ Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌΠΈ ΠΈΠ· Π½ΠΈΡ .
Kontrolnaya-Rabota.ru
Π‘Π΅ΡΠ²ΠΈΡ kontrolnaya-rabota.ru β Π½Π°ΡΡΠΎΡΡΠ°Ρ Π½Π°Ρ ΠΎΠ΄ΠΊΠ° Π΄Π»Ρ Π½Π΅ΡΠ°Π΄ΠΈΠ²ΡΡ ΡΡΠ°ΡΠΈΡ ΡΡ. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΎΠ½Π»Π°ΠΉΠ½ Π½Π° ΡΡΠΎΠΌ ΡΠ°ΠΉΡΠ΅ β ΡΠ΅Π»ΡΠΉ Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΠ°Π·Π΄Π΅Π», Π³Π΄Π΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ:
ΠΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»Ρ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π²Π²Π΅ΡΡΠΈ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ Π΄Π°Π½Π½ΡΠ΅ ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°ΡΠΈ ΠΈ ΠΊΠ»ΠΈΠΊΠ½ΡΡΡ ΠΊΠ½ΠΎΠΏΠΊΡ Β«ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΒ».
ΠΠ°ΠΏΡΡΠ°ΡΡΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΊΠ°ΠΆΠ΄Π°Ρ ΡΡΡΠ°Π½ΠΈΡΠ° ΡΡΠΎΠ³ΠΎ ΡΠ°Π·Π΄Π΅Π»Π° ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΠΏΠΎΡΡΠ½Π΅Π½ΠΈΡΠΌΠΈ ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠ°ΠΌΠΈ. Π’Π°ΠΌ ΠΆΠ΅ Π΄Π°Π½Ρ ΠΏΠΎΠ΄ΡΠΊΠ°Π·ΠΊΠΈ, ΠΊΠ°ΠΊΠΈΠ΅ ΡΠΈΠΌΠ²ΠΎΠ»Ρ ΠΈ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΏΡΠΈ Π²Π²ΠΎΠ΄Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ.
ΠΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ 2D-Π³ΡΠ°ΡΠΈΠΊΠ° Π² Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°Ρ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠ΅Π³ΠΎ Π½Π΅ Π²ΡΡΡΠ΅ΡΠΈΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½ΠΈΠ³Π΄Π΅.
ΠΠΎΡΡΠΎΠΈΠ½ΡΡΠ²Π° ΡΠ΅ΡΠ²ΠΈΡΠ° kontrolnaya-rabota.ru β Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΈΠΌ Π±Π΅Π· ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ, Π²ΡΠ΄Π°ΡΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Ρ Ρ ΠΎΠ΄ΠΎΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ, Π±ΡΡΡΡΡΠ΅ ΠΈ ΡΠΎΡΠ½ΡΠ΅ ΠΎΡΠ²Π΅ΡΡ, Π½Π°Π»ΠΈΡΠΈΠ΅ Π΄ΡΡΠ³ΠΈΡ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠ² Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΠΎΠ², Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² ΠΈ ΠΏΡΠΎΡΠ΅Π³ΠΎ. Π Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΠΊ β Π² ΡΠΎΠΌ, ΡΡΠΎ Π½Π΅ Π²ΡΠ΅ ΡΠ΅ΡΡΠ΅ΠΆΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΌΠ°ΡΡΡΠ°Π±ΠΈΡΠΎΠ²Π°ΡΡ. ΠΡΠΎ ΡΠΎΠ·Π΄Π°Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ Π½Π΅ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΠΏΡΠΈ ΠΊΠΎΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ.
Umath.ru
ΠΠ΅Π±-ΡΠ΅ΡΠ²ΠΈΡ Umath.ru β Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π½Π°Π±ΠΎΡ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠ², Π½ΠΎ ΠΈ Π½Π΅ΠΏΠ»ΠΎΡ ΠΎΠΉ ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. ΠΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΡΡΠΎΠΈΡΡ 3 ΡΠ°Π·Π½ΠΎΠ²ΠΈΠ΄Π½ΠΎΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ:
Π ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅Π³ΠΎ, ΡΡΠΎΡ Π²Π΅Π±-ΡΠ°ΠΉΡ Π΄Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ°Π·ΠΌΠ΅ΡΠ°ΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ (ΠΎΠ½ΠΈ Π±ΡΠ΄ΡΡ Π½Π°ΡΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ°Π·Π½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ). Π’Π°ΠΊΠΆΠ΅ ΠΎΠ½ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡ ΠΌΠ°ΡΡΡΠ°Π± ΠΈ ΡΠΌΠ΅ΡΠ°ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π½ΡΡΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° (ΠΊΠ½ΠΎΠΏΠΊΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ ΡΠ»Π΅Π²Π° ΠΎΡ Π³ΡΠ°ΡΠΈΠΊΠ°, Π½ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΈ ΠΌΡΡΡΡ).
ΠΠΎΡΠΎΠ²ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°ΡΠ°ΡΡ Π½Π° ΠΊΠΎΠΌΠΏΡΡΡΠ΅Ρ Π² Π²ΠΈΠ΄Π΅ ΠΊΠ°ΡΡΠΈΠ½ΠΊΠΈ.
ΠΠΎΡΡΠΎΠΈΠ½ΡΡΠ²Π° Umath.ru β ΠΏΡΠΎΡΡΠΎΡΠ° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ (Π½Π° ΡΡΠ°Π½ΠΈΡΠ΅ Π΅ΡΡΡ ΠΏΠΎΡΡΠ½Π΅Π½ΠΈΡ, ΡΠΏΠΈΡΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ ΠΊΠΎΠ½ΡΡΠ°Π½Ρ), ΠΌΠ°ΡΡΡΠ°Π±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΡΡΠ°Π²Π»ΡΡΡ ΠΊΠΎΠΌΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ, ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊΠΎΠΌ ΠΈ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ°ΠΌΠΈ. ΠΠ΅Π΄ΠΎΡΡΠ°ΡΠΎΠΊ β ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΠΉ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π» (ΠΊ ΡΠΎΠΆΠ°Π»Π΅Π½ΠΈΡ, Π½Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΡΡΠΎΠΈΡΡ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΡΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ) ΠΈ ΠΈΠ½ΠΎΠ³Π΄Π° ΠΏΡΠΎΡΠΊΠ°ΠΊΠΈΠ²Π°ΡΡΠΈΠ΅ ΠΎΡΠΈΠ±ΠΊΠΈ. ΠΠΎ, Π½Π°Π΄Π΅Π΅ΠΌΡΡ, ΡΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΠ΅ΡΠ²ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎ ΡΠ°Π·Π²ΠΈΠ²Π°Π΅ΡΡΡ.
Graph.Reshish.ru
Graph.Reshish.ru β Π΅ΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΠΏΡΠΎΡΡΠΎΠΉ ΠΈ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎ ΡΠ°Π±ΠΎΡΠ°ΡΡΠΈΠΉ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΏΠΎΠΌΠΎΡΠ½ΠΈΠΊ, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π΅ΠΏΠ»ΠΎΡ ΠΎ ΡΠ΅ΡΡΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ (floor, celi, log, round ΠΈ Ρ. Π΄.), ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½Π°Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ Graph.Reshish.ru ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π΅Ρ ΠΌΠ°ΡΡΡΠ°Π±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π½ΡΡΠ°. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΏΡΠΈ Π½Π°Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ ΠΊΡΡΡΠΎΡΠ° ΡΡΠ΄ΠΎΠΌ Ρ Π½ΠΈΠΌ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°ΡΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ.
ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° Π²Π²ΠΎΠ΄Π° Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π²ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ ΠΈ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ Π² ΡΠΏΠΈΡΠΊΠ΅ ΡΠ»Π΅Π²Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Ρ Π² Π²ΠΈΠ΄Π΅ ΠΊΠ½ΠΎΠΏΠΎΠΊ. ΠΠ΅Π»ΠΎΡΡ, Π½ΠΎ ΠΎΡΠ΅Π½Ρ ΠΎΠ±Π»Π΅Π³ΡΠ°Π΅Ρ Π·Π°Π΄Π°ΡΡ ΡΠ΅ΠΌ, ΠΊΡΠΎ ΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠΎΠΉ Π½Π° ΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΠΎΠΌ ΡΡΡΡΠΎΠΉΡΡΠ²Π΅.
ΠΠΎΡΠΎΠ²ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π³ΡΡΠ·ΠΈΡΡ Π½Π° ΠΊΠΎΠΌΠΏΡΡΡΠ΅Ρ Π² Π²ΠΈΠ΄Π΅ ΠΊΠ°ΡΡΠΈΠ½ΠΊΠΈ ΡΠΎΡΠΌΠ°ΡΠ° png. Π ΠΏΡΡΡΡ Π²Π°Ρ Π½Π΅ ΡΠΌΡΡΠ°Π΅Ρ ΡΠ΅ΠΌΠ½ΡΠΉ ΡΠΎΠ½ β ΠΏΠΎΡΠ»Π΅ ΡΠΊΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΠΎΠ½ Π·Π°ΠΌΠ΅Π½ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ·ΡΠ°ΡΠ½ΡΠΉ.
Π₯ΠΎΠ΄ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π·Π΄Π΅ΡΡ ΡΠ°ΠΊΠΆΠ΅ Π½Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ. ΠΡΠΎ ΠΌΠΈΠ½ΡΡ, Π½ΠΎ Π² ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠΌ ΡΡΠΎΡ ΡΠ΅ΡΠ²ΠΈΡ Π²Π΅ΡΡΠΌΠ° ΡΠ΄ΠΎΠ±Π΅Π½.
Desmos
ΠΠΎΡΡΠ°Π» Desmos.com, Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΌΠ½ΠΎΠ³ΠΈΡ Π΄ΡΡΠ³ΠΈΡ , ΠΌΠΎΠΆΠ΅Ρ Ρ ΡΠ°Π½ΠΈΡΡ Π²Π°ΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ Π² ΡΠ²ΠΎΠ΅ΠΉ Π±Π°Π·Π΅ ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π΄Π΅Π»ΠΈΡΡΡΡ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠ·Π΅ΡΠ°ΠΌΠΈ ΡΡΡΠ»ΠΊΠ°ΠΌΠΈ Π½Π° Π½ΠΈΡ . ΠΠ΄Π½Π°ΠΊΠΎ Π΄Π»Ρ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΈΠ΄Π΅ΡΡΡ Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°ΡΡΡΡ Π½Π° ΡΠ΅ΡΡΡΡΠ΅.
ΠΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π΅Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅Π΄ΡΡΡΠΈΡ Π²ΠΈΠ΄ΠΎΠ² Π³ΡΠ°ΡΠΈΠΊΠΎΠ²:
ΠΡ ΠΏΡΠΈΠ²Π΅Π»ΠΈ Π»ΠΈΡΡ ΠΊΡΠ°ΡΠΊΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ΅ΡΠ²ΠΈΡΠ°. ΠΡΠ»ΠΈ Π²Π°ΠΌ Π½ΡΠΆΠ½Π° ΡΠΏΡΠ°Π²ΠΊΠ° ΠΏΠΎ ΡΠ°Π±ΠΎΡΠ΅ Ρ Π½ΠΈΠΌ Π½Π° ΡΡΡΡΠΊΠΎΠΌ ΡΠ·ΡΠΊΠ΅, ΠΎΠ½Π° Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π·Π΄Π΅ΡΡ.
ΠΡΡΡΠ΅Π΅, ΡΡΠΎ Π΅ΡΡΡ Π² Desmos.com, ΡΡΠΎ Π³ΠΈΠ±ΠΊΠΎ Π½Π°ΡΡΡΠ°ΠΈΠ²Π°Π΅ΠΌΡΠΉ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΉΡ, ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ°Π·Π½ΠΎΡΠΈΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎ ΡΠ°Π±Π»ΠΈΡΠ°ΠΌ ΠΈ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ Ρ ΡΠ°Π½ΠΈΡΡ ΡΠ²ΠΎΠΈ ΡΠ°Π±ΠΎΡΡ Π² Π±Π°Π·Π΅ ΡΠ΅ΡΡΡΡΠ° Π±Π΅Π· ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΠΊ β Π² ΡΠΎΠΌ, ΡΡΠΎ ΡΠ΅ΡΠ²ΠΈΡ Π½Π΅ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΠΏΠ΅ΡΠ΅Π²Π΅Π΄Π΅Π½ Π½Π° ΡΡΡΡΠΊΠΈΠΉ ΡΠ·ΡΠΊ.
Grafikus.ru
Grafikus.ru β Π΅ΡΠ΅ ΠΎΠ΄ΠΈΠ½ Π΄ΠΎΡΡΠΎΠΉΠ½ΡΠΉ Π²Π½ΠΈΠΌΠ°Π½ΠΈΡ ΡΡΡΡΠΊΠΎΡΠ·ΡΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ². ΠΡΠΈΡΠ΅ΠΌ ΠΎΠ½ ΡΡΡΠΎΠΈΡ ΠΈΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π² Π΄Π²ΡΡ ΠΌΠ΅ΡΠ½ΠΎΠΌ, Π½ΠΎ ΠΈ Π² ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅.
ΠΠΎΡ Π½Π΅ΠΏΠΎΠ»Π½ΡΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅Π½Ρ Π·Π°Π΄Π°Π½ΠΈΠΉ, Ρ ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΡΡΠΎΡ ΡΠ΅ΡΠ²ΠΈΡ ΡΡΠΏΠ΅ΡΠ½ΠΎ ΡΠΏΡΠ°Π²Π»ΡΠ΅ΡΡΡ:
ΠΠΎΡΠΎΠ²ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΎΡΠΊΡΡΠ²Π°Π΅ΡΡΡ Π² ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠΌ ΠΎΠΊΠ½Π΅. ΠΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»Ρ Π΄ΠΎΡΡΡΠΏΠ½Ρ ΠΎΠΏΡΠΈΠΈ ΡΠΊΠ°ΡΠΈΠ²Π°Π½ΠΈΡ, ΠΏΠ΅ΡΠ°ΡΠΈ ΠΈ ΠΊΠΎΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠ»ΠΊΠΈ Π½Π° Π½Π΅Π³ΠΎ. ΠΠ»Ρ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ ΠΏΡΠΈΠ΄Π΅ΡΡΡ Π°Π²ΡΠΎΡΠΈΠ·ΠΎΠ²Π°ΡΡΡΡ Π½Π° ΡΠ΅ΡΠ²ΠΈΡΠ΅ ΡΠ΅ΡΠ΅Π· ΠΊΠ½ΠΎΠΏΠΊΠΈ ΡΠΎΡΡΠ΅ΡΠ΅ΠΉ.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½Π°Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ Grafikus.ru ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π³ΡΠ°Π½ΠΈΡ ΠΎΡΠ΅ΠΉ, ΠΏΠΎΠ΄ΠΏΠΈΡΠ΅ΠΉ ΠΊ Π½ΠΈΠΌ, ΡΠ°Π³Π° ΡΠ΅ΡΠΊΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ β ΡΠΈΡΠΈΠ½Ρ ΠΈ Π²ΡΡΠΎΡΡ ΡΠ°ΠΌΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΈ ΡΠ°Π·ΠΌΠ΅ΡΠ° ΡΡΠΈΡΡΠ°.
Π‘Π°ΠΌΠ°Ρ ΡΠΈΠ»ΡΠ½Π°Ρ ΡΡΠΎΡΠΎΠ½Π° Grafikus.ru β Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ 3D-Π³ΡΠ°ΡΠΈΠΊΠΎΠ². Π ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠΌ ΠΎΠ½ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π½Π΅ Ρ ΡΠΆΠ΅ ΠΈ Π½Π΅ Π»ΡΡΡΠ΅, ΡΠ΅ΠΌ ΡΠ΅ΡΡΡΡΡ-Π°Π½Π°Π»ΠΎΠ³ΠΈ.
Onlinecharts.ru
ΠΠ½Π»Π°ΠΉΠ½-ΠΏΠΎΠΌΠΎΡΠ½ΠΈΠΊ Onlinecharts.ru ΡΡΡΠΎΠΈΡ Π½Π΅ Π³ΡΠ°ΡΠΈΠΊΠΈ, Π° Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π²ΡΠ΅Ρ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΡ Π²ΠΈΠ΄ΠΎΠ². Π ΡΠΎΠΌ ΡΠΈΡΠ»Π΅:
ΠΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ΅ΡΡΡΡΠΎΠΌ ΠΎΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΠΎ. ΠΠ½Π΅ΡΠ½ΠΈΠΉ Π²ΠΈΠ΄ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ (ΡΠ²Π΅Ρ ΡΠΎΠ½Π°, ΡΠ΅ΡΠΊΠΈ, Π»ΠΈΠ½ΠΈΠΉ, ΡΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ, ΡΠΎΡΠΌΠ° ΡΠ³Π»ΠΎΠ², ΡΡΠΈΡΡΡ, ΠΏΡΠΎΠ·ΡΠ°ΡΠ½ΠΎΡΡΡ, ΡΠΏΠ΅ΡΡΡΡΠ΅ΠΊΡΡ ΠΈ Ρ. Π΄.) ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΌ. ΠΠ°Π½Π½ΡΠ΅ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π²Π²Π΅ΡΡΠΈ ΠΊΠ°ΠΊ Π²ΡΡΡΠ½ΡΡ, ΡΠ°ΠΊ ΠΈ ΠΈΠΌΠΏΠΎΡΡΠΈΡΠΎΠ²Π°ΡΡ ΠΈΠ· ΡΠ°Π±Π»ΠΈΡΡ CSV-ΡΠ°ΠΉΠ»Π°, Ρ ΡΠ°Π½ΠΈΠΌΠΎΠ³ΠΎ Π½Π° ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ΅. ΠΠΎΡΠΎΠ²ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π΄ΠΎΡΡΡΠΏΠ΅Π½ Π΄Π»Ρ ΡΠΊΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π½Π° ΠΠ Π² Π²ΠΈΠ΄Π΅ ΠΊΠ°ΡΡΠΈΠ½ΠΊΠΈ, PDF-, CSV- ΠΈΠ»ΠΈ SVG-ΡΠ°ΠΉΠ»ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π»Ρ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ ΠΎΠ½Π»Π°ΠΉΠ½ Π½Π° ΡΠΎΡΠΎΡ ΠΎΡΡΠΈΠ½Π³Π΅ ImageShack.Us ΠΈΠ»ΠΈ Π² Π»ΠΈΡΠ½ΠΎΠΌ ΠΊΠ°Π±ΠΈΠ½Π΅ΡΠ΅ Onlinecharts.ru. ΠΠ΅ΡΠ²ΡΠΉ Π²Π°ΡΠΈΠ°Π½Ρ ΠΌΠΎΠ³ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π²ΡΠ΅, Π²ΡΠΎΡΠΎΠΉ β ΡΠΎΠ»ΡΠΊΠΎ Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅.
ΠΠ½Π»Π°ΠΉΠ½-ΡΠ΅ΡΠ²ΠΈΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΠ΅Π½Ρ ΡΠ°ΡΡΠΎ Π΄Π»Ρ ΡΠ΄Π°ΡΠΈ ΡΠ°Π±ΠΎΡΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π»ΠΈΡΡ ΡΠ΅ΡΡΠ΅ΠΆΠ° Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ. ΠΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Ρ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΎ ΠΏΠΎΡΡΠ΅Π±ΠΎΠ²Π°ΡΡ ΠΎΡ Π²Π°Ρ Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π»ΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΡΠ΅ΡΡΡΡ, ΠΊΠΎΡΠΎΡΡΠΉ Π΄Π°Π΅Ρ ΡΠ°ΠΊΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ, β Kontrolnaya-Rabota.ru, Π½ΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅. ΠΠΈΠΆΠ΅ ΠΌΡ ΠΏΠ΅ΡΠ΅ΡΠΈΡΠ»ΠΈΠΌ Π»ΡΡΡΠΈΠ΅ ΠΈΠ· Π½ΠΈΡ :
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ, Π²ΡΠ΄Π°Π²Π°Π΅ΠΌΡΠ΅ ΡΡΠΈΠΌΠΈ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ°ΠΌΠΈ, ΠΈΠ½ΠΎΠ³Π΄Π° ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΡΡ ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΠΎΡΠΈΠ±ΠΊΠΈ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΠ»ΠΈΡΠΊΠΎΠΌ ΠΏΠΎΠ»Π°Π³Π°ΡΡΡΡ Π½Π° Π½ΠΈΡ Π½Π΅ ΡΡΠΎΠΈΡ. Π‘ΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π·Π½Π°Π½ΠΈΡ, ΠΊΠ°ΠΊ Π½ΠΈ ΠΊΡΡΡΠΈ, Π³ΠΎΡΠ°Π·Π΄ΠΎ Π½Π°Π΄Π΅ΠΆΠ½Π΅Π΅.