Как посчитать погрешность по стьюденту
Как посчитать погрешность по стьюденту
Для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. В результате проведенных измерений мы получили значений величины :
Так как оценочные значения результата измерений и ошибки Δx не являются точными, запись (3) результата измерений должна сопровождаться указанием его надежности P. Под надежностью или доверительной вероятностью понимают вероятность того, что истинное значение измеряемой величины заключено в интервале, указанном записью (3). Сам этот интервал называется доверительным интервалом.
Например, измеряя длину некоторого отрезка, окончательный результат мы записали в виде
Таким образом, задача заключается в том, чтобы, имея выборку (2), найти оценку результата измерений , его ошибку Δx и надежность P.
Эта задача может быть решена с помощью теории вероятностей и математической статистики.
В большинстве случаев случайные ошибки подчиняются нормальному закону распределения, установленного Гауссом. Нормальный закон распределения ошибок выражается формулой
где Δx отклонение от величины истинного значения;
σ истинная среднеквадратичная ошибка;
σ 2 дисперсия, величина которой характеризует разброс случайных величин.
Поскольку кривая распределена симметрично относительно оси ординат, можно утверждать, что равные по величине, но противоположные по знаку ошибки равновероятны. А это дает возможность в качестве оценки результатов измерений взять среднее значение всех элементов выборки (2)
где n число измерений.
Итак, если в одних и тех же условиях проделано n измерений, то наиболее вероятным значением измеряемой величины будет ее среднее значение (арифметическое). Величина стремится к истинному значению μ измеряемой величины при n → ∞.
Средней квадратичной ошибкой отдельного результата измерения называется величина
Она характеризует ошибку каждого отдельного измерения. При n → ∞ S стремится к постоянному пределу σ
С увеличением σ увеличивается разброс отсчетов, т.е. становится ниже точность измерений.
Среднеквадратичной ошибкой среднего арифметического называется величина
Это фундаментальный закон возрастания точности при росте числа измерений.
Ошибка характеризует точность, с которой получено среднее значение измеренной величины
. Результат записывается в виде:
Эта методика расчета ошибок дает хорошие результаты (с надежностью 0.68) только в том случае, когда одна и та же величина измерялась не менее 30 50 раз.
В 1908 году Стьюдент показал, что статистических подход справедлив и при малом числе измерений. Распределение Стьюдента при числе измерений n → ∞ переходит в распределение Гаусса, а при малом числе отличается от него.
Для расчета абсолютной ошибки при малом количестве измерений вводится специальный коэффициент, зависящий от надежности P и числа измерений n, называемый коэффициентом
Стьюдента t.
Опуская теоретические обоснования его введения, заметим, что
где Δx абсолютная ошибка для данной доверительной вероятности;
среднеквадратичная ошибка среднего арифметического.
Для этого удобнее воспользоваться таблицей 3, в которой интервалы заданы в долях величины σ, являющейся мерой точности данного опыта по отношению к случайным ошибкам.
Таблица 2
n | Значения Р | ||||
0.6 | 0.8 | 0.95 | 0.99 | 0.999 | |
2 | 1.376 | 3.078 | 12.706 | 63.657 | 636.61 |
3 | 1.061 | 1.886 | 4.303 | 9.925 | 31.598 |
4 | 0.978 | 1.638 | 3.182 | 5.841 | 12.941 |
5 | 0.941 | 1.533 | 2.776 | 4.604 | 8.610 |
6 | 0.920 | 1.476 | 2.571 | 4.032 | 6.859 |
7 | 0.906 | 1.440 | 2.447 | 3.707 | 5.959 |
8 | 0.896 | 1.415 | 2.365 | 3.499 | 5.405 |
9 | 0.889 | 1.397 | 2.306 | 3.355 | 5.041 |
10 | 0.883 | 1.383 | 2.262 | 3.250 | 4.781 |
11 | 0.879 | 1.372 | 2.228 | 3.169 | 4.587 |
12 | 0.876 | 1.363 | 2.201 | 3.106 | 4.437 |
13 | 0.873 | 1.356 | 2.179 | 3.055 | 4.318 |
14 | 0.870 | 1.350 | 2.160 | 3.012 | 4.221 |
15 | 0.868 | 1.345 | 2.145 | 2.977 | 4.140 |
16 | 0.866 | 1.341 | 2.131 | 2.947 | 4.073 |
17 | 0.865 | 1.337 | 2.120 | 2.921 | 4.015 |
18 | 0.863 | 1.333 | 2.110 | 2.898 | 3.965 |
19 | 0.862 | 1.330 | 2.101 | 2.878 | 3.922 |
20 | 0.861 | 1.328 | 2.093 | 2.861 | 3.883 |
21 | 0.860 | 1.325 | 2.086 | 2.845 | 3.850 |
22 | 0.859 | 1.323 | 2.080 | 2.831 | 3.819 |
23 | 0.858 | 1.321 | 2.074 | 2.819 | 3.792 |
24 | 0.858 | 1.319 | 2.069 | 2.807 | 3.767 |
25 | 0.857 | 1.318 | 2.064 | 2.797 | 3.745 |
26 | 0.856 | 1.316 | 2.060 | 2.787 | 3.725 |
27 | 0.856 | 1.315 | 2.056 | 2.779 | 3.707 |
28 | 0.855 | 1.314 | 2.052 | 2.771 | 3.690 |
29 | 0.855 | 1.313 | 2.048 | 2.763 | 3.674 |
30 | 0.854 | 1.311 | 2.045 | 2.756 | 3.659 |
31 | 0.854 | 1.310 | 2.042 | 2.750 | 3.646 |
40 | 0.851 | 1.303 | 2.021 | 2.704 | 3.551 |
60 | 0.848 | 1.296 | 2.000 | 2.660 | 3.460 |
120 | 0.845 | 1.289 | 1.980 | 2.617 | 3.373 |
∞ | 0.842 | 1.282 | 1.960 | 2.576 | 3.291 |
Таблица 3
Δ = Δx/σ | Значения Р | |||||
0.5 | 0.7 | 0.9 | 0.95 | 0.99 | 0.999 | |
1.0 | 2 | 3 | 5 | 7 | 11 | 17 |
0.5 | 3 | 6 | 13 | 18 | 31 | 50 |
0.4 | 4 | 8 | 19 | 27 | 46 | 74 |
0.3 | 6 | 13 | 32 | 46 | 78 | 127 |
0.2 | 13 | 29 | 70 | 99 | 171 | 277 |
0.1 | 47 | 169 | 273 | 387 | 668 | 1089 |
При обработке результатов прямых измерений предлагается следующий порядок операций:
Рассмотрим на числовом примере применение приведенных выше формул.
Пример. Измерялся микрометром диаметр d стержня (систематическая ошибка измерения равна 0.005 мм ). Результаты измерений заносим во вторую графу таблицы, находим и в третью графу этой таблицы записываем разности
, а в четвертую их квадраты (таблица 4).
Таблица 4
Задавшись надежностью P = 0.95, по таблице коэффициентов Стьюдента для шести измерений найдем t = 2.57. Абсолютная ошибка найдется по формуле (10).
Сравним случайную и систематическую ошибки:
следовательно, δ = 0.005 мм можно отбросить.
Расчет погрешностей емкости с помощью коэффициента Стьюдента. Расчет погрешности измерения мощности и сопротивления
Отклонение результата измерения от истинного измеряемой величины называют погрешностью измерения.
Абсолютная погрешность измерения ΔА равна разности между результатом измерения Ах и истинным значением измеренной величины А:
Просмотр содержимого документа
«Расчет погрешностей емкости с помощью коэффициента Стьюдента. Расчет погрешности измерения мощности и сопротивления»
Лабораторная работа № 1.
Расчет погрешностей емкости с помощью коэффициента Стьюдента.
Расчет погрешности измерения мощности и сопротивления
Общеобразовательная – Умение решать задачи по теме погрешности.
Воспитательная – Проверить сформированность качеств знаний.
Отклонение результата измерения от истинного измеряемой величины называют погрешностью измерения.
Абсолютная погрешность измерения ΔА равна разности между результатом измерения Ах и истинным значением измеренной величины А:
Действительная относительная погрешность представляет собой отношение абсолютной погрешности измерения к действительному значению измеряемой величины, выраженное в процентах:
(2)
Номинальная относительная погрешность, равная отношению абсолютной погрешности к измеренному значению исследуемой величины,
(3)
Приведенная относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к максимальному значению измерительного прибора
(4)
Для приборов с двухсторонней шкалой Амакс определяется как сумма абсолютных величин положительного и отрицательного пределов измерения.
Если шкала начинается не с нуля, а с какого-то минимального значения, то Амакс равно разности между конечным и начальным значениями шкалы.
Случайными называются погрешности, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности нельзя исключить опытным путем, т. к. они возникают случайно. Для того, чтобы исключить случайные погрешности производят неоднократные измерения и определяют среднее арифметическое из полученных значений, определяемое как
,
где а1, а2, …, аn – результаты отдельных измерений;
n – число измерений.
Для оценки точности результата измерений необходимо знать закон распределения случайных погрешностей, таким законом является нормальный закон Гаусса. Среднее квадратическое отклонение может быть выражено через случайные отклонения результатов наблюдения Р:
Этот способ определения доверительных интервалов справедлив толко для больших количеств измерений (20-30). Для небольшого количества измерений для определения доверительного интервала нужно пользоваться коэффициентами Стьюдента tn, которые зависят от задаваемой доверительной вероятности Р и количества измерений n.
Для определения доверительного интервала среднюю квадратическую погрешность надо умножить на коэффициент Стьюдента. Окончательный результат измерения можно записать так:
А = Аср tn
Задача 1. Для уменьшения влияния случайных погрешностей на результат измерения, емкость конденсатора С измерялась многократно в одинаковых условиях (таблица 1). Считая, что случайные погрешности имеют нормальный закон распределения, определить на основании заданного количества измерения (табл. 1, табл. 2):
Действительное значение измеряемой емкости;
Среднюю квадратическую и максимальную погрешности однократного измерения;
Доверительный интервал для результата измерения при доверительной вероятности Рд (табл.3).
Имеется ли систематическая составляющая в погрешности измерения емкости и с какой доверительной вероятностью ее можно оценить, если принять в качестве действительного значения емкости значения Сср (таб.1, таб.2).
Критерий Стьюдента
Критерий Стьюдента применяется для проверки равенства средних значений двух выборок, сравнение количественных значений только двух выборок с нормальным распределением случайной величины.
Критерий Стьюдента определяется по формуле:
$\bar
$\bar
n1 – объем первой выборки;
n2 – объем второй выборки;
σ1 и σ2 – среднее квадратическое отклонение в соответствующих выборках и находятся из формулы:
Число степеней свободы определяется по формуле:
Fкр(α, k) определяется по таблице
Формула критерия Стьюдента для несвязанных независимых выборок:
Формула для определения стандартной ошибки разности средних арифметических σxy:
Число степеней свободы определяется выражением:
При n1=n2 число степеней свободы находится по формуле:
k=2n-2
а стандартная ошибка разности средних арифметических σxy задаётся выражением:
Пример
В первой выборки продажа товара со скидкой, а во второй без скидки.
№ п/п | X | Y |
1 | 25 | 19 |
2 | 34 | 31 |
3 | 23 | 17 |
4 | 35 | 24 |
5 | 33 | 28 |
6 | 25 | 31 |
7 | 45 | 39 |
8 | 41 | 32 |
9 | 27 | 38 |
10 | 54 | 43 |
11 | 32 | 21 |
12 | 32 |
По критерию Стьюдента определить зависит ли спрос на товар от скидок на него при p=0.99?
Решение
В соответствии с таблицей n1=12, n2=11
Вычислим дисперсии D(X), D(Y)
№ п/п | X | Y | D(X) | D(Y) |
1 | 25 | 19 | 78,028 | 107,4 |
2 | 34 | 31 | 0,0278 | 2,6777 |
3 | 23 | 17 | 117,36 | 152,86 |
4 | 35 | 24 | 1,3611 | 28,769 |
5 | 33 | 28 | 0,6944 | 1,8595 |
6 | 25 | 31 | 78,028 | 2,6777 |
7 | 45 | 39 | 124,69 | 92,86 |
8 | 41 | 32 | 51,361 | 6,9504 |
9 | 27 | 38 | 46,694 | 74,587 |
10 | 54 | 43 | 406,69 | 185,95 |
11 | 32 | 21 | 3,3611 | 69,95 |
12 | 32 | 3,3611 | ||
Сумма | 406 | 323 | 911,67 | 726,55 |
Среднее | 33,833 | 29,364 |
Подставим значения в формулу стандартной ошибки разности средних арифметических σxy:
Вычисляем критерий Стьюдента:
Число степеней свободы равно:
k=12+11–2=21
По таблице Стьюдента находим критическое значение:
tкрит=2,8310
Отсюда tкрит> tнабл, следовательно, зависит.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.4 / 5. Количество оценок: 13