Как пористость влияет на теплопроводность
Пористость материалов. Определение пористости. Влияние пористости на свойства материалов.
Теплопроводность материалов и термическое сопротивление конструкций. Влияние различных факторов на теплопроводность материалов. Оценка теплопроводности.
Отношение материала к постоянному или переменному тепловому воздействию характеризуется его теплопроводностью, теплоемкостью, термической стойкостью, огнестойкостью, огнеупорностью.
Теплопроводность – способность материала проводить через свою толщу тепловой поток, возникающий под влиянием разности температур на поверхностях, ограничивающих материал.
Это свойство характеризуется коэффициентом теплопроводности λ (Вт/ (м* 0 C), который показывает количество теплоты, проходящее через плоскую стенку толщиной 1 м и площадью 1 м 2 при перепаде температур на противоположных поверхностях в 1 0 C в течение 1 ч.
Теплопроводность зависит от:
-Величины и характера пор материала;
Если вода в порах замерзает, то теплопроводность материала еще больше увеличивается, поскольку теплопроводность льда в 4 раза больше, чем воды – 2,1 Вт/(м*0C).
В связи с тем, что в крупных и сообщающихся порах усиливается перенос теплоты конвекцией, что повышает суммарную теплопроводность, мелкопористые материалы и материалы с замкнутыми порами обладают меньшей теплопроводностью. Материалы слоистого или волокнистого строения имеют различную теплопроводность в зависимости от направления потока по отношению к волокнам.
Состав, макро- и микроструктура древесины.
Макроструктура- строение ствола дерева, видимое невооруженным глазом. Обычно изучают три основных разреза ствола: поперечный (торцовый), радиальный, проходящий через ось ствола, и тангентальный, проходящий по хорде вдоль ствола.
При рассмотрении разрезов ствола невооруженным глазом или через лупу можно различить следующие основные его части: кора, которая состоит из пробковой ткани (пористая древесина, обеспечивающая тепловую защиту при разных изменениях температуры) и луба (выполняет проводящие функции – это проводящие клетки и ткани). По лубяному слою в растущем дереве доставляются питательные вещества, необходимые для развития, от кроны к корням.
За лубом находится камбий (состоит из древесных клеток, способных к делению или синтезу). Этот слой обеспечивает рост дерева путем деления клеток, для этого необходимы питательные вещества, поэтому луб и камбий находятся рядом. Слой камбия образуется за период – годовой слой.
За клетками камбия находится древесина (основная часть ствола), разделенная на две части – заболонь (состоит из проводящих клеток по которым осуществляется вертикальный (восходящий) поток, по клеткам заболони вода из корней попадает в крону и участвует в процессе синтеза, клетки заболони имеют очень высокую влажность). Внутренняя часть древесины – ядро (образуется за счет отмирания клеток заболони (клетки ядра выполняют механические функции).
Древесные клетки в дереве по функциям разделяются на:
проводящие (осуществляется транспортировка жидкости);
запасающие (содержащие запас питательных веществ);
механические (опорные) определяют свойства древесины.
Группы одинаковых клеток образуют древесные ткани.
Проводящие клетки находятся в заболони и ранней зоне годового слоя:
трахеиды (в хвойных породах)
сосуды (в лиственных породах).
— трахеиды (в хвойных породах)
— либриформ (составляют основную массу ствола) (в лиственных породах).
Запасающие клетки находятся в сердцевинных лучах, образуя горизонтальные каналы.
Твердение гипсового теста
По теории А.А. Байкова твердение гипсовых вяжущих можно условно подразделить на три периода:
1. Подготовительный, в процессе которого полуводный гипс растворяется в воде и образует пресыщенный по отношению к двуводному гипсу раствор. В течение этого периода вязкость гипсового теста меняется незначительно, в это время осуществляют перемешивание, транспортировку, укладку и уплотнение гипсового теста, растворных и бетонных смесей.
2. Период коллоидации. После образования насыщенного раствора вода взаимодействует с полуводным гипсом на поверхности зерен вяжущего путем прямого присоединения ее к твердому веществу. Это приводит к образованию коллоидных частиц двуводного гипса на поверхности зерен вяжущего.
3. Период кристаллизации – характеризуется ростом коллоидных частиц, образованием крупных кристаллов двуводного гипса за счет продолжающихся процессов гидратации и растворения мелких кристаллов. Кристаллы срастаются и образуют пространственный сросток – структуру твердения.
Коррозия цементного камня.
Коррозия первого вида. Выщелачивание гидроксида кальция происходит интенсивно при действии мягких вод, содержащих мало растворенных веществ. К ним относятся конденсат, дождевые воды, воды горных рек, болотная вода.
• тяжелые – плотностью 2200-2500кг/м 3 на песке, гравии или щебне из тяжелых горных пород; применяют во всех несущих конструкциях;
1. легкие бетоны на пористых природных и искусственных заполнителях;
2. ячеистые бетоны (газобетон и пенобетон) из смеси вяжущего, воды, тонкодисперсного кремнеземистого компонента и порообразователя;
3. крупнопористые (беспесчаные) бетоны на плотном или пористом крупном заполнителе – без мелкого заполнителя;
Свойства бетонной смеси
Бетонной смесью называют рационально составленную и тщательно перемешанную смесь компонентов бетона до начала процессов схватывания и твердения. Состав бетонной смеси определяют, исходя из требований к самой смеси и к бетону.
Основной структурообразующей составляющей в бетонной смеси является цементное тесто.
Независимо от вида бетонная смесь должна удовлетворять двум главным требованиям:
• обладать хорошей удобоукладываемостью, соответствующей применяемому способу уплотнения;
• сохранять при транспортировании и укладке однородность, достигнутую при приготовлении.
Удобоукладываемость(или удобоформуемость) самое важное свойство бетонной смеси – способность заполнять форму при данном способе уплотнения, сохраняя свою однородность. Для оценки удобоукладываемости используют три показателя:
1. Подвижность бетонной смеси.
Подвижностьбетонной
измеряемой осадкой (см)
конуса (ОК), отформованного
Жесткостьбетонной смеси
характеризуется временем (с)
вибрирования, необходимым для
выравнивания и уплотнения.
Связностьобуславливает однородность строения и свойств бетона. При уплотнении подвижных бетонных смесей происходит сближение составляющих ее зерен, при этом част воды отжимается вверх. Очень важно сохранить однородность бетонной смеси при перевозке, укладке в форму и уплотнении.
Тяжелый бетон
Материалы для изготовления бетона
Цемент.Для тяжелого бетона применяют портландцемент и его разновидности, глиноземистый цемент и другие вяжущие, отвечающие требованиям соответствующих ГОСТов.
Крупный заполнитель.В качестве крупного заполнителя для бетона применяют гравий, щебень с размером зерен 5-70 мм. Качество крупного заполнителя определяется минеральным составом и свойствами исходной породы (ее прочностью, морозостойчивостью).
Водопотребностьявляется важной технологической характеристикой заполнителя. Зерна заполнителя поглощают воду и адсорбируют ее на своей поверхности, поэтому необходимо регулировать количество воды затворения с учетом «смачивания» заполнителя, чтобы получить нужную удобоукладываемость бетонной смеси.
Вода,применяемая для затворения бетонной смеси и поливки бетона не должна содержать вредных примесей, препятствующих схватыванию и твердению вяжущего вещества.
Тяжёлые бетоны изготавливаются в соответствии с ГОСТ 26633-91 «БЕТОНЫ ТЯЖЕЛЫЕ И МЕЛКОЗЕРНИСТЫЕ».
Для приготовления тяжелого бетона необходимы следующие материалы. В качестве вяжущих материалов следует применять портландцементы и шлакопортландцементы по ГОСТ 10178. Вид и марку цемента следует выбирать в соответствии с назначением конструкций и условиями их эксплуатации, требуемого класса бетона по прочности, марок по морозостойкости и водонепроницаемости, величины отпускной или передаточной прочности бетона для сборных конструкций на основании требований стандартов, технических условий или проектной документации на эти конструкции с учетом требований ГОСТ 23464, а также воздействия вредных примесей в заполнителях на бетон.
Портландцемент обязан быть свежим, не слежавшимся. Если есть комки, цемент просеивают через сито с размерами ячеек 5 мм. Если марка цемента выше той, которая рекомендуется для данного бетона, то надо разбавить высокоактивный цемент тонкомолотой активной добавкой, чтобы избежать перерасхода высокомарочного цемента.
В зависимости от зернового состава песок разделяют на крупный, средний, мелкий.
Мелкие частицы (пыль, ил, глина) увеличивают водопотребность бетонных смесей и расход цемента в бетоне. Поэтому содержание в песке зерен, проходящих через сито 0,16 мм, должно быть не более 10% по массе, при этом количество пылевидных, илистых и глинистых частиц, определяемых отмучиванием, не должно превышать 3%. Глина набухает при увлажнении и увеличивается в объеме при замерзании, снижая морозостойкость. Песок очищают от мелких частиц путем промывки.
В природном песке и в гравии могут содержаться органические примеси (например, продукты разложения остатков растений), в частности, органические гумусовые кислоты, которые понижают прочность бетона и даже разрушают цемент. Наличие органических примесей определяют колориметрическим (цветовым) методом.
В качестве крупных заполнителей для тяжелых бетонов используют щебень из природного камня по ГОСТ 8267, щебень из гравия по ГОСТ 10260, щебень из попутно добываемых пород и отходов горнообогатительных предприятий по ГОСТ 23254, гравий по ГОСТ 8268, а также щебень из шлаков ТЭЦ по ГОСТ 26644. В зависимости от крупности зерен щебень, гравий подразделяют на четыре фракции: 5-10 мм, 10-20 мм, 20-40 мм и 40-70 мм. Щебень, гравий могут поступать в виде смеси двух или большего числа фракций. По соглашению между поставщиком и потребителем может применяться щебень фракций 3-10 мм, 10-15 мм (или 5-15),15-20 мм. Зерновой состав каждой фракции или смеси фракций должен находиться в указанных ниже пределах.
Кроме того, годятся битый кирпич, куски старого бетона, битое стекло, старые гвозди, обрубки стального прутка. Нельзя применять лом цветных металлов.
Материалы на основе битума
Рулонные материалы.
Кровельный картон – получают из вторичного текстиля, макулатуры, древесного сырья. Картон имеет рыхлую структуру и хорошо впитывает, в частности, расплавленный битум. Марка картона устанавливается по его массе (г) на 1 м 3 картона, она может быть от 300 до 500.
Пергамин – простейший рулонный материал, получаемый пропиткой кровельного картона расплавленным легкоплавким битумом. Применяют пергамин для нижних слоев кровельного ковра и для устройства пароизоляционных прокладок в строительных конструкциях. Марки пергамина: П-300; П-350 и т.п. (П – пергамин; 300 – марка картона).
Рубероид – многослойный материал, получаемый, как и пергамин, пропиткой кровельного картона легкоплавким битумом и последующего нанесения с обеих сторон слоя тугоплавкого битума, наполненного минеральным порошком. Лицевая сторона рубероида покрывается посыпкой (песком, слюдой, сланцевой мелочью и т.п.), защищающей материал от УФ-излучения; нижняя сторона – порошком из известняка или талька, для защиты от слипания слоев в рулоне. Марки рубероида – РКК-400; РКЧ-350 и т.п. (Р – рубероид; К – кровельный; К и Ч – вид посыпки, соответственно крупнозернистая или чешуйчатая). Для нижних слоев кровельного ковра выпускается рубероид подкладочный с пылевидной посыпкой с обеих сторон.
Качество рулонных кровельных материалов оценивается в соответствии со стандартом комплексам показателей:
прочностью при разрыве, Н.
гибкостью на холоде, характеризуемой минимальной температурой, при которой материал не трескается при изгибе его вокруг бруса.
теплостойкостью, характеризуемой максимальной температурой, при которой у вертикально подвешенного образца не наблюдается стекания покровной массы.
водонепроницаемостью, характеризуемой временем, в течение которого образец не пропускает воду при определенном давлении.
Кровля из рубероида и пергамина представляет собой многослойный кровельный ковер, выклеиваемый на крыше с помощью битумных мастик.
Наплавляемый рубероид – отличается от обычного рубероида более толстым слоем битума ( в особенности, на нижней стороне материала. Из наплавляемого рубероида кровельный ковер получают без клеящих мастик путем подплавления нижней части рубероида с последующей прикаткой.
Замена картонной основы на основу на базе стекловолокна и синтетического волокна в виде тканей, холста и нетканого полотна позволила значительно повысить качество рулонных материалов за счет малого удлинения при разрыве.
Производят материалы на основе алюминиевой и медной фольги (фольгоизол). Фольга, находящаяся на лицевой стороне материала, придает ему декоративные свойства и защищает от солнечного излучения.
Модификация битума полимерами позволило расширить диапазон рабочих температур, повышение его долговечности. Используют в основном термоэласты
У современных битумно-полимерных материалов для защиты от солнечного излучения применяют посыпки из цветной минеральной (сланцевой, керамической) или полимерной крошки. Такие посыпки более надежны, чем традиционные, и придают декоративность материалу.
Штучные материалы.Для крыш с большим уклоном, поверхность которых уже является декоративным элементом здания, необходимы кровельные материалы, придающие кровле цвет и фактуру.
Гидроизоляционные материалыпредназначены для предохранения строительныхконструкций от контакта с водой, поглощения воды или от фильтрации воды через них.
Состав.
Пленкообразующие – вещества или связующие для объединения всех компонентов красочного состава и образования твердой тонкой пленки: клеи, известь, цемент, жидкое стекло, полимеры.
Пигменты- это сухие красящие порошки, нерастворимые в воде, масле, растворителе: природные(мел, известь, каолин, графит), металлические порошки в виде пудры, пыли, искусственные минеральные пигменты. Наполнители – это тонкоизмельченные(тальк, диатомит, песок, мел, слюда) вводимые для удешевления, повышения декоративных, защитных свойств красок.
Существует несколько видов красок:
Известковые краски. Основным связывающие компонентом такого вида краски является гашеная известь. Такую краску применяют для окрашивания потолков, стен. Преимущество данной марки краски в том, что она устойчива к атмосферным изменениям, слой данной краски прекрасно пропускает воздух следственно поверхность «дышит». На окрашенной данным видам краски поверхности не образуется плесень, подойдет для помещений с большой влажностью. Недостаток в том, что окрашенная данной краской поверхность крайне не устойчива к действию индустриальных газов, которые содержат сероводород и азотные окиси.
Краска на клеевой основе. В такой краске основным компонентом является столярный клей. Окрашенная такой краской поверхность так же пропускает воздух и образует матовую пленку. У данной краски одно не маловажное преимущество: окрашенная поверхность не пачкается, в отличие от краски на известковой основе. Под действием влажного воздуха краска набухает, следовательно, ее необходимо использовать исключительно в сухих помещениях;
Масляная краска. самая распространенная краска, основу которой, составляет олифа (натуральное связующее). Данная краска подходит для окрашивания большинства поверхностей, например кухни, стен и потолков в ванной. Ею идеально выкрашивать металлические и деревянные поверхности. Недостаток лишь в том, что поверхность, окрашенная такой краской, не пропускает воздух. Следовательно, в помещениях с большей влажностью воздуха проводить малярные работы масляной краской не рекомендуется;
Алкидная краска. Основой является алкидные смолы. Поверхность, окрашенная такой краской, приобретает глянцевое, почти как лаковое, покрытие, которое очень прочно соприкасается с окрашенной поверхностью. Она довольно быстро высыхает. Такую краску рекомендуется применять для окрашивания окон, дверей, мебели;Цементная краска. Образующим веществом является цемент. В состав данной краски входят известковые пигменты. Такую краску рекомендуется использовать для окраски фасадов и стен. Можно использовать в помещениях с большей влажностью воздуха;
Лаки представляют собой пленкообразующие растворы синтетических или натуральных смол в органических растворителях.
Эмалевые краскипредставляют собой суспензию пигмента в лаке, они должны обладать определенной твердостью, атмосферостойкостью, хорошим внешним видом.
Пористость материалов. Определение пористости. Влияние пористости на свойства материалов.
Пористостью называют степень заполнения общего объема материала порами (отношение объема пор к объему образца). Пористость подразделяется на открытую, закрытую и общую пористости, от величины которых зависят водопоглощение, водо-, газо- и паропроницаемость строительных материалов. С пористостью связаны также такие свойства материалов как прочность, теплопроводность, морозостойкость, звукопроницаемость и др.
Закрытую пористость Пзакр находят по разности между общей и открытой пористостью:
Пористость строительных материалов колеблется в пределах от 0 (сталь, стекло) до 90-98% (пенопласт). Пористость материала характеризуют не только с количественной стороны, но и по характеру пор: замкнутые и открытые, мелкие (размеров в сотые и тысячные миллиметра) и крупные (от десятых долей миллиметра до 2-5 мм).
По характеру пор оценивают способность материала поглощать воду. Так полистирольный пенопласт, пористость которого достигает 95% имеет замкнутые поры и практически не поглощает воду. В то же время керамический кирпич, имеющий пористость в три раза меньшую, благодаря открытому характеру пор (большинство пор представляют собой сообщающиеся капилляры) активно поглощает воду. Открытые поры увеличивают водопоглощение и ухудшают морозостойкость. В звукопоглощающих материалах открытые поры желательны, так как они поглощают звуковую энергию.
Величина пористости в значительной мере влияет на прочность материала.
Величина прочности также зависит от размеров пор: она возрастает с их уменьшением. Прочность мелкопористых материалов, а также материалов с закрытой пористостью выше, чем прочность крупнопористых и с открытой пористостью.
3. Водопоглощение, гигроскопичность, влажность, водоудерживающая способность материалов и методы их определения.
Отношение материала к статическому или циклическому воздействию воды или пара характеризуется гидрофизическими свойствами.
При хранении во влажной атмосфере или после дождя пористые строительные материалы впитывают влагу. У плотных материалов вода может адсорбироваться тонким слоем на поверхности. В этом случае состояние материала характеризуют влажностью.
Влажность В – отношение массы воды, находящейся в данный момент в материале, к массе или – к объему материала в сухом состоянии, %:
где — масса влажного и сухого материала соответственно;
V – объем материала в сухом состоянии.
Увлажнение приводит к изменению многих свойств материала: повышается масса строительной конструкции, возрастает теплопроводность; под влиянием расклинивающего действия воды уменьшается прочность материала. Для многих строительных материалов влажность нормирована. Например, влажность стеновых материалов – 5-7%, воздушно-сухой древесины – 12-18%.
Гигроскопичностью называется свойство капиллярно-пористого материала поглощать водяной пар из воздуха.
Степень гигроскопичности зависит от количества и величины пор в материале, его структуры, температуры и относительной влажности воздуха. Материалы с одинаковой пористостью, но с более мелкими порами обладают более высокой гигроскопичностью, чем крупнопористые. Это отрицательно сказывается на физико-механических характеристиках материалов.
Например, цемент при хранении поглощает из воздуха водяные пары, теряет активность; древесина при влажном воздухе разбухает, коробится, образует трещины усушки, изменяются форма и размеры деревянных изделий.
Гигроскопичность строительных материалов различна: некоторые активно притягивают своей поверхностью молекулы воды (гипс, цемент); другие, наоборот отталкивают воду (битумы, стекло, полимеры). Гигроскопичность строительных материалов необходимо учитывать при их сушке, длительном хранении, транспортировании в определенных эксплуатационных условиях.
За характеристику гигроскопичности принята величина отношения массы поглощенной влаги при относительной влажности воздуха 100% и температуре +200C к массе сухого материала.
Капиллярное всасывание воды пористым материалом происходит по капиллярным порам, когда часть конструкции соприкасается с водой. Например, грунтовые воды могут подниматься по капиллярам и увлажнять нижнюю часть здания. Это свойство характеризуется высотой поднятия воды в капиллярах материала, количеством поглощенной влаги и интенсивностью всасывания.
Капиллярами принято называть канальные поры, которые способны впитывать жидкость.
Средний радиус капилляра, т.е. поры, в которой происходит капиллярный подсос, неодинаков, так как основные параметры этого процесса различаются.
Водопоглощением W называют свойство материала впитывать и удерживать в себе воду при полном или частичном погружении его в воду. Количество поглощенной материалом воды, отнесенное к его масс в сухом состоянии, называют водопоглощением по массе Wm, а отнесенное к объему – водопоглощением по объему WV, %.
Водопоглощение различных строительных материалов колеблется в очень широких пределах. Так, водопоглощение по массе глиняного обыкновенного кирпича составляет от 8 до 20%, тяжелого бетона – около 3%, гранита – 0,5-0,7%, пористых теплоизоляционных материалов – 100% и более. Водопоглощение по массе высокопористых материалов может быть больше пористости, но водопоглощение по объему никогда не может превышать пористость.
Водопоглощение используют для оценки структуры материала, привлекая для этой цели коэффициент насыщения пор водой.
Коэффициент насыщения позволяет оценить структуру материала. Он изменяется от 0 до 1. Уменьшение значения коэффициента насыщения (при той же пористости) свидетельствует о сокращении открытой пористости, что проявляется в повышении морозостойкости.
При насыщении материала водой существенно изменяются его свойства: повышаются средняя плотность, теплопроводность, происходят структурные изменения в материале, приводящие к снижению прочностных показателей.
Роль пористости в формировании свойств материалов.
К физическим свойствам материала относятся плотность, пористость, водопоглощение, влагоотдача, гигроскопичность, водопроницаемость, морозостойкость, теплопроводность, звукопоглощение, огнестойкость, огнеупорность и некоторые другие.
Пористость. Эта характеристика определяется степенью заполнения объема материала порами, которая исчисляется в процентах. Пористость влияет на такие свойства материалов, как прочность, водопоглощение, теплопроводность, морозостойкость и др. По величине пор материалы разделяют на мелко-пористые, у которых размеры пор измеряются в сотых и тысячных долях миллиметра, и крупнопористые (размеры пор — от десятых долей миллиметра до 1—2 мм). Пористость строительных материалов колеблется в широком диапазоне. Так, например, у стекла и металла она равна нулю, у кирпича она составляет — 25-35%, у мипоры — 98%.
Отличают открытую и закрытую пористость. Изменяя соотношение объемов открытых и закрытых пор, их размеров, в технологии материалов достигают получение материалов с заданными свойствами. Например, при уменьшении пористости достигается повышение прочности материалов.
При получение теплоизоляционных материалов стремятся увеличить пористость и создать им мелкопористую структуру. Если в общем объеме увеличить долю закрытых пор, то это благоприятно скажется на морозостойкости материалов. Для улучшения звукопоглощающих свойств стремятся создать в материале систему разветвленных и сообщающихся пор. Следовательно, от пористости материалов зависит их средняя плотность, прочность, водонасыщаемость, теплопроводность, морозостойкость, звукопоглощаемость и другие свойства.
Водопоглощение — способность материала впитывать и удерживать в своих порах влагу. По объему водопоглощение всегда меньше 100%, а по массе может быть более 100%, например у теплоизоляционных материалов. Насыщение материала водой ухудшает его основные свойства, увеличивает теплопроводность и среднюю плотность, уменьшает прочность. Степень снижения прочности материала при предельном его водонасыщении называется водостойкостью и характеризуется коэффициентом размягчения. Материалы с коэффициентом размягчения не менее 0,8 относят к водостойким. Их применяют в конструкциях, находящихся в воде, и в местах с повышенной влажностью.
Влагоотдача — это свойство материала терять находящуюся в его порах влагу. Влагоотдача характеризуется процентным количеством воды, которое материал теряет за сутки (при относительной влажности окружающего воздуха 60 % и температуре +20 °С). Влагоотдача имеет большое значение для многих материалов и изделий, например стеновых панелей и блоков, которые в процессе возведения здания обычно имеют повышенную влажность, а в обычных условиях благодаря водоотдаче высыхают — вода испаряется до тех пор, пока не установится равновесие между влажностью материала стен и влажностью окружающего воздуха, т.е., пока материал не достигнет воздушно-сухого состояния.
Гигроскопичность — свойство пористых материалов поглощать влагу из воздуха. Гигроскопичные материалы (древесина, теплоизоляционные материалы, кирпичи полусухого прессования и др.) могут поглощать большое количество воды. При этом увеличивается их масса, снижается прочность, изменяются размеры. Для некоторых материалов в условиях повышенной и даже нормальной влажности приходится применять защитные покрытия. А такие материалы, как кирпич сухого прессования можно использовать только в зданиях и помещениях с пониженной влажностью воздуха.
Водопроницаемостью называют способность материала пропускать воду под давлением. Эта характеристика определяется количеством воды, прошедшей при постоянном давлении в течение 1 часа через материал площадью 1 м 2 и толщиной 1 м. К водонепроницаемым относятся особо плотные материалы (сталь, стекло, битум) и плотные материалы с замкнутыми порами (например, бетон специально подобранного состава).
Морозостойкость — это способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без снижения прочности и массы, а также без появления трещин, расслаивания, крошения. Для возведения фундаментов, стен, кровли и других частей здания, подвергающихся попеременному замораживанию и оттаиванию, необходимо применять материалы повышенной морозостойкости. Плотные материалы, не имеющие пор, или материалы с незначительной открытой пористостью, с водопоглощением не более 0,5%, обладают высокой морозостойкостью.
Теплопроводность — свойство материала передавать теплоту при наличии разности температур снаружи и внутри строения. Эта характеристика зависит от ряда факторов: природы и строения материала, пористости, влажности, а также от средней температуры, при которой происходит передача теплоты. Кристаллические и крупнопористые материалы, как правило, более теплопроводны, чем материалы аморфного и мелкопористого строения. Материалы, имеющие замкнутые поры, обладают меньшей теплопроводностью, чем материалы с сообщающимися порами. Теплопроводность однородного материала зависит от средней плотности — чем меньше плотность, тем меньше теплопроводность, и наоборот. Влажные материалы более теплопроводны, чем сухие, так как теплопроводность воды в 25 раз выше теплопроводности воздуха. От теплопроводности зависит толщина стен и перекрытий отапливаемых зданий.
Звукопоглощением называется способность материала ослаблять интенсивность звука при прохождении его через материал. Звукопоглощение зависит от структуры материала: сообщающиеся открытые поры поглощают звук лучше, чем замкнутые. Лучшими звукоизолирующими показателями обладают многослойные стены и перегородки с чередующимися слоями пористых и плотных материалов.
Огнестойкость — это свойство материалов противостоять действию высоких температур. По степени огнестойкости материалы делят на несгораемые, трудно-сгораемые и сгораемые. Несгораемые материалы (кирпич, бетон, сталь) под действием огня или высоких температур не воспламеняются, не тлеют и не обугливаются, но могут сильно деформироваться. Трудносгораемые материалы (фибролит, асфальтовый бетон и т.д.) тлеют и обугливаются, но после удаления источника огня эти процессы прекращаются. Сгораемые материалы (дерево, рубероид, пластмассы и т. д.) воспламеняются или тлеют и продолжают гореть или тлеть и после удаления источника огня.
Огнеупорность — свойство материала противостоять, не деформируясь, длительному воздействию высоких температур. По степени огнеупорности материалы делят на огнеупорные, выдерживающие действие температур до 1580 °С и выше (шамотный кирпич), тугоплавкие, выдерживающие действие температур 1350-1580 °С (тугоплавкий кирпич), легкоплавкие, размягчающиеся или разрушающиеся при температуре ниже 1350 °С (керамический кирпич).
Дата добавления: 2015-04-18 ; просмотров: 6 ; Нарушение авторских прав