деформационный шов подпорных стен
Температурный (деформационный) шов в подпорной стенке
Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР
Обычно люди недочитывают снип. Там написано максимум, не более 25 м. Особенно для прижатого фундамента.
Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР
У них отсутствуют в нормах допуски на горизонтальность. Колонны или будут криво стоять или будут приварены с зазором. Для небольших сараев может быть и так сойдёт.
5.18.3 Требования, предъявляемые к законченным бетонным, бетонным с композитной полимерной арматурой и железобетонным конструкциям или частям сооружений, приведены в таблице 5.12. Таблица 5.12 9 Отметки поверхностей и закладных изделий, служащих опорами для стальных или сборных железобетонных колонн и других сборных элементов -5 мм 5.18.17 Открытые поверхности стальных закладных деталей, выпуски арматуры должны быть очищены от наплывов бетона или раствора. |
5.28. Для обеспечения проектного положения закладной детали в изделии следует до бетонирования предусмотреть ее фиксацию путем крепления к элементам формы. В особых случаях (при расположении детали на открытой поверхности изделия, при бетонировании), когда ее крепление к бортам формы нецелесообразно, деталь допускается приваривать к арматуре. При необходимости сварка детали с арматурой может выполняться с помощью дополнительных стержней. |
При этом допуск на арматуру тоже порядка 3 мм.
Обеспечить, считаю, можно, но пока не в России.
Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР
Offtop: Как говорит мой знакомый АН: «страну спасут только массовые расстрелы».
Но исключая лирику. Это невероятно сложно и дорого.
Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР
Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР
Да. Для сараюшек. Где ГСП 160х5 высотой 3 м. Может быть прокатит.
А мне не нравится, что это фактически будет не собрать. Потому что такой каркас надо начинать собирать с балок. Сначала балки приболтить к верху колонн, потом уже колонны ставить на ЗД, а потом уже абы как приваривать на соплях с зазорами 15 мм под плитой или сечением.
Температура температурой, сильно уйти краям и углам не дадут анкера.
Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР
если не менять последовательность операций- то не собрать, но где обоснование такой необходимости? при нормальном геодезическом контроле допуски могут быть минимальные, выдержать геометрию не сложнее, чем для монтажа колонн на анкера.
Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР
Деформационный шов подпорных стен
РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ПОДПОРНЫХ СТЕН И СТЕН ПОДВАЛОВ ДЛЯ ПРОМЫШЛЕННОГО И ГРАЖДАНСКОГО СТРОИТЕЛЬСТВА
Рекомендовано к изданию решением секции несущих конструкций НТС ЦНИИПромзданий.
Составлено к главам СНиП II-15-74* и II-91-77** и содержит основные положения по расчету и конструированию подпорных стен из монолитного и сборного железобетона с примерами расчета и необходимыми табличными значениями коэффициентов, облегчающих расчет, а также рекомендации по расчету стен подвалов промышленных и гражданских зданий.
* На территории Российской Федерации документ не действует. Действуют СНиП 2.02.01-83, здесь и далее по тексту.
Для инженерно-технических работников проектных и строительных организаций.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Руководство распространяется на проектирование гравитационных подпорных стен для промышленного и гражданского строительства, возводимых на естественных основаниях, а также на проектирование стен подвалов промышленных и гражданских зданий.
1.2. Руководство не распространяется на проектирование подпорных стен магистральных дорог, гидротехнических сооружений, подпорных стен специального назначения (противооползневые, противообвальные и др.), а также на проектирование подпорных стен, предназначенных для строительства в особых условиях (на вечномерзлых, набухающих, просадочных грунтах, на подрабатываемых территориях и др.).
1.3. Проектирование подпорных стен и стен подвалов должно осуществляться на основании:
чертежей генерального плана (горизонтальная и вертикальная планировка);
отчета об инженерно-геологических изысканиях;
технологического задания, содержащего данные о нагрузках и при необходимости особые требования к проектируемой конструкции, например, требования по ограничению деформаций и др.
1.4. Конструкция подпорных стен и стен подвалов должна устанавливаться по данным сравнения вариантов, исходя из технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, трудоемкости и стоимости строительства, а также с учетом условий эксплуатации конструкций.
1.5. Подпорные стены, сооружаемые в населенных пунктах, следует проектировать с учетом архитектурных особенностей этих пунктов.
1.6. При проектировании подпорных стен и стен подвалов должны приниматься конструктивные схемы, обеспечивающие необходимую прочность, устойчивость и пространственную неизменяемость сооружения в целом, а также отдельных элементов его на всех стадиях возведения и эксплуатации.
1.7. Элементы сборных конструкций должны отвечать условиям индустриального изготовления их на специализированных предприятиях.
Целесообразно укрупнять элементы сборных конструкций, насколько это позволяют грузоподъемность монтажных механизмов, а также условия изготовления и транспортирования.
1.8. Для монолитных железобетонных конструкций следует предусматривать унифицированные опалубочные и габаритные размеры, позволяющие применять типовые арматурные изделия и инвентарную опалубку.
1.9. В сборных конструкциях подпорных стен и стен подвалов конструкции узлов и соединений элементов должны обеспечивать надежную передачу усилий, прочность самих элементов в зоне стыка, а также связь дополнительно уложенного бетона в стыке с бетоном конструкции.
1.10. Проектирование конструкций подпорных стен и стен подвалов при наличии агрессивной среды должно вестись с учетом дополнительных требований, предъявляемых главой СНиП III-23-76*.
1.11. Проектирование мер защиты железобетонных конструкций от электрокоррозии должно производиться с учетом требований СН 65-76* «Инструкция по защите железобетонных конструкций от коррозии, вызываемой блуждающими токами».
1.12. При проектировании подпорных стен и стен подвалов следует, как правило, применять унифицированные типовые конструкции.
Проектирование индивидуальных конструкций подпорных стен и стен подвалов допускается в тех случаях, когда параметры и нагрузки для их проектирования превосходят параметры и нагрузки для типовых конструкций, либо когда применение типовых конструкций невозможно исходя из местных условий осуществления строительства.
1.13. В Руководстве рассматриваются подпорные стены и стены подвалов при засыпке их однородным грунтом.
2. МАТЕРИАЛЫ ДЛЯ ПОДПОРНЫХ СТЕН
2.1. В зависимости от принятого конструктивного решения подпорные стены могут возводиться из железобетона, бетона, бутобетона и каменной кладки.
2.2. Выбор материала для подпорных стен обусловливается технико-экономическими соображениями, требованиями долговечности, условиями производства работ, наличием местных строительных материалов и средств механизации.
2.3. Железобетонные и бетонные подпорные стены рекомендуется проектировать из бетона проектной марки по прочности на сжатие:
Предварительно напряженные железобетонные конструкции следует преимущественно проектировать из бетона марки М 300, М 400, М 500, М 600. Для бетонной подготовки следует применять бетон марки М 50 и М 100.
2.5. Бутовая и бутобетонная кладка для подпорных стен должна быть выполнена из камня марки не ниже 150-200 на портландцементном растворе марки не ниже 50.
2.6. Для конструкций, подвергающихся попеременному замораживанию и оттаиванию, в проекте должна быть оговорена марка бетона по морозостойкости.
Проектная марка бетона по морозостойкости для железобетонных конструкций подпорных стен назначается в зависимости от температурного режима их эксплуатации в соответствии с табл.1. Температурный режим эксплуатации устанавливается исходя из значения расчетной зимней температуры наружного воздуха в районе строительства.
Температурный режим эксплуатации подпорных стен
Минимальная проектная марка бетона по морозостойкости
Примечание. Расчетная зимняя температура наружного воздуха принимается как средняя температура воздуха наиболее холодной пятидневки в зависимости от района строительства.
Требования к бутобетону и каменной кладке по морозостойкости предъявляются те же, что и к бетонным и железобетонным конструкциям.
На территории Российской Федерации документ не действует. Действует ГОСТ 5781-82, здесь и далее по тексту.
При расчетной зимней температуре ниже минус 30 °С арматурная сталь класса A-II марки ВСт5пс2 к применению не допускается.
2.8. В качестве напрягаемой арматуры предварительно напряженных железобетонных элементов следует преимущественно применять термически упрочненную арматуру классов Ат-VI и Ат-V по ГОСТ 10884-78*.
Допускается также применять горячекатаную арматуру классов A-V, A-IV по ГОСТ 5781-75 и термически упрочненную арматуру класса Ат-IV по ГОСТ 10884-81.
При расчетной зимней температуре ниже минус 30 °С арматурная сталь класса A-IV марки 80С к применению не допускается.
2.9. Анкерные тяги и закладные элементы должны приниматься из прокатной полосовой стали класса С 38/23 (ГОСТ 380-71* ) марки ВСт3кп2 при расчетной зимней температуре до минус 30 °С включительно и марки ВСт3пс6 при расчетной температуре от минус 30 °С до минус 40 °С. Для анкерных тяг рекомендуется также сталь С 52/40 марки 10Г2С1 при расчетной зимней температуре до минус 40 °С включительно. Толщину полосовой стали следует принимать не менее 6 мм. Возможно также применение для анкерных тяг арматурной стали класса А-III.
2.10. В сборных железобетонных и бетонных элементах монтажные (подъемные) петли должны выполняться из арматурной стали класса A-I (марок ВСт3сп2 и ВСт3пс2) или из стали класса A-II (марка 10ГТ).
3. ТИПЫ ПОДПОРНЫХ СТЕН
3.1. Подпорные стены по конструктивному решению подразделяются на массивные и тонкостенные.
В массивных подпорных стенах их устойчивость на сдвиг при воздействии горизонтального давления грунта обеспечивается в основном собственным весом стены.
В тонкостенных подпорных стенах их устойчивость обеспечивается собственным весом стены и весом грунта, вовлекаемого конструкцией стены в работу.
Как правило, массивные подпорные стены более материалоемки и более трудоемки в возведении, чем тонкостенные, и могут применяться при соответствующем технико-экономическом обосновании (например, при возведении их из местных материалов, отсутствии сборного железобетона и т.д.).
3.2. Массивные стены могут возводиться из монолитного бетона, сборных бетонных блоков, бутобетона и каменной кладки.
По форме поперечного сечения массивные стены могут быть:
с двумя вертикальными гранями (рис.1, а);
с вертикальной лицевой и наклонной тыльной гранью (рис.1, б),
с наклонной лицевой и вертикальной тыльной гранью (рис.1, в),
с двумя наклонными в сторону засыпки гранями (рис.1, г),
со ступенчатой тыльной гранью (рис.1, д),
с ломаной тыльной гранью (рис.1, е).
Рис.1. Массивные подпорные стены
3.3. Стены с наклонными гранями (переменного сечения, утончающиеся кверху) менее материалоемки, чем стены с двумя параллельными гранями.
При наличии наклонной в сторону от засыпки тыльной грани в работу подпорной стены включается масса грунта, расположенного над этой гранью. В стенах с двумя наклонными в сторону засыпки гранями интенсивность горизонтального давления грунта уменьшается, но возведение стен такого сечения является более сложным.
Деформационные швы в подпорных стенах
2. Проект подпорной стенки на слабом основании
2.1 Выбор типа подпорной стенки и типа фундамента
При строительстве на слабых грунтах используют те же конструкции, что и в обычных условиях, но фундамент видоизменяется в зависимости от конкретных инженерно-геологических условий.
В зависимости от конструкции и назначения гидротехнические подпорные стены подразделяются на следующие виды:
гравитационные – возводимые на нескальном и скальном основаниях, выполняемые обычно из монолитного или сборного бетона и железобетона. Подпорные стены этого вида, как правило, входят в состав сооружений напорного фронта гидроузлов, причальных сооружений и набережных;
шпунтовые и свайные – возводимые на основаниях, допускающих погружение шпунта или свай, входящих в состав причальных сооружений, набережных и других гидротехнических сооружений.
Обратную засыпку за стенами со стороны тыловой грани следует, как правило, выполнять из несвязных водопроницаемых грунтов, обеспечивающих хороший отвод поверхностных, грунтовых и фильтрационных вод, быстропротекающую деформацию засыпки и наименьшую ее осадку, а также исключающих в ней морозное пучение. Эти требования должны выполняться во всех случаях засыпок при узком фронте работ.
При выполнении обратной засыпки из глинистых грунтов следует принимать меры по понижению уровня и отводу грунтовых вод, по недопущению морозного пучения, а также учитывать ползучесть грунта.
При проектировании сооружений, поддерживающих оползневые склоны, для обратной засыпки у тыловой грани следует использовать крупнозернистые проницаемые грунты, обеспечивающие отвод фильтрующей воды.
Снижение требований к плотности грунта засыпки в каждом отдельном случае должно быть обосновано. Засыпку по высоте стены следует, как правило, выполнять одинаковой плотности. При расположении на засыпке сооружений и механизмов плотность грунта засыпки следует назначать по допустимым осадкам, устанавливаемым технологическими требованиями эксплуатации этих сооружений или механизмов.
Подпорные стены, возводимые на нескальном основании, должны быть разбиты по длине на отдельные секции деформационными швами (температурными и температурно-осадочными), а возводимые на скальном основании – температурными швами.
Расстояние между деформационными швами (длина секций) необходимо устанавливать на основании анализа геологии и гидрогеологии строительной площадки, учета климатических условий и конструктивного решения стены, а также методов строительного производства.
Расстояние между швами и их конструкция должны обеспечивать независимую работу отдельных секций.
Бетонные и железобетонные конструкции массивных подпорных стен следует разбивать на блоки бетонирования временными строительными швами.
В деформационных швах и швах между сборными элементами стен, воспринимающих напор, следует предусматривать уплотнения, обеспечивающие суффозионную устойчивость грунта засыпки.
В безнапорных стенах конструкция швов должна обеспечивать грунтонепроницаемость.
В строительных швах уплотнения следует устраивать простейшей конструкции.
В засыпке за подпорными стенами при наличии фильтрационных вод следует рассматривать целесообразность устройства дренажа, обеспечивающего понижения уровня грунтовой воды и снижение давления воды на тыловую грань сооружения.
При необходимости следует предусматривать меры по защите основания стены от подмыва – устройство каменной наброски, укладка плит и т.п.
При конструировании сооружений следует предусматривать мероприятия по защите стен от коррозии, навала и истирающего воздействия судов, льда и др.
При выборе конструкции фундамента и оценке слабых глинистых оснований большое значение имеют следующие факторы. Прежде всего, мощность слабого грунта и глубина его залегания. На основании опыта проектирования и возведения гидротехнических сооружений можно условно принять примерную градацию мощностей слабого грунта (м): малая мощность- до 5-6, средняя- от 5-6 до 15-16, большая — свыше 15-16.
Мощность слоя слабого грунта оказывает прямое влияние на тип фундамента и вид инженерных мероприятий по подготовке слабого основания. Так, наличие больших толщ часто требует устройства свайного фундамента с использованием весьма длинных свай и усложненных схем производства работ. При средних и малых мощностях слоя слабого грунта возможны различные виды улучшения свойств этих грунтов, а также их полная или частичная замена.
Малая начальная плотность и значительная сжимаемость слабых грунтов приводят к значительным осадкам. При этом время уплотнения растягивается на годы, а иногда и десятки лет. Чтобы избежать недопустимых деформаций и сократить сроки стабилизации осадок, используют такой технологический прием, как устройство вертикальных песчаных дрен.
Деформационный шов в кирпичном здании
Вернуться на страницу «Деформационные швы»
Рассмотрим следующие нормативные требования.
СП 15.13330.2012 КАМЕННЫЕ И АРМОКАМЕННЫЕ КОНСТРУКЦИИ
Актуализированная редакция СНиП II-22-81*
9.78 Температурно-усадочные швы в стенах каменных зданий должны устраиваться в местах возможной концентрации температурных и усадочных деформаций, которые могут вызвать недопустимые по условиям эксплуатации разрывы кладки, трещины, перекосы и сдвиги кладки по швам (по концам протяженных армированных и стальных включений, а также в местах значительного ослабления стен отверстиями или проемами). Расстояния между температурно-усадочными швами должны устанавливаться расчетом.
9.79 Максимальные расстояния между температурно-усадочными швами, которые допускается принимать для неармированных наружных стен без расчета:
а) для надземных каменных и крупноблочных стен отапливаемых зданий при длине армированных бетонных и стальных включений (перемычки, балки и т.п.) не более 3,5 м и ширине простенков не менее 0,8 м — по таблице 33; при длине включений более 3,5 м участки кладки по концам включений должны проверяться расчетом по прочности и раскрытию трещин;
б) то же, для стен из бутобетона — по таблице 33 как для кладки из бетонных камней на растворах марки 50 с коэффициентом 0,5;
в) то же, для многослойных стен — по таблице 33 для материала основного конструктивного слоя стен;
г) для стен неотапливаемых каменных зданий и сооружений для условий, указанных в «а», — по таблице 33 с умножением на коэффициенты:
для закрытых зданий и сооружений — 0,7;
для открытых сооружений — 0,6;
д) для каменных и крупноблочных стен подземных сооружений и фундаментов зданий, расположенных в зоне сезонного промерзания грунта, — по таблице 33 с увеличением в два раза; для стен, расположенных ниже границы сезонного промерзания грунта, а также в зоне вечной мерзлоты, — без ограничения длины.
9.80 Деформационные швы в стенах, связанных с железобетонными или стальными конструкциями, должны совпадать со швами в этих конструкциях. При необходимости в зависимости от конструктивной схемы зданий в кладке стен следует предусматривать дополнительные температурные швы без разрезки швами в этих местах железобетонных или стальных конструкций.
Средняя температура наружного воздуха наиболее холодной пятидневки | Расстояние между температурными швами, м, при кладке | |||
из керамического кирпича и камней в т.ч. крупноформатных, природных камней, крупных блоков из бетона или керамического кирпича | из силикатного кирпича, бетонных камней, крупных блоков из силикатного бетона и силикатного кирпича | |||
на растворах марок | ||||
50 и более | 25 и более | 50 и более | 25 и более | |
Минус 40 °С и ниже | 50 | 60 | 35 | 40 |
» 30 °С | 70 | 90 | 50 | 60 |
» 20 °С и выше | 100 | 120 | 70 | 80 |
Примечания |
1 Для промежуточных значений расчетных температур расстояния между температурными швами допускается определять интерполяцией.
2 Расстояния между температурно-усадочными швами крупнопанельных зданий из кирпичных панелей назначаются в соответствии с [2].
9.81 Осадочные швы в стенах должны быть предусмотрены во всех случаях, когда возможна неравномерная осадка основания здания или сооружения.
9.82 Деформационные и осадочные швы следует проектировать со шпунтом или четвертью, заполненными упругими прокладками, исключающими возможность продувания швов.
9.84 Вертикальные температурные швы в лицевом слое многослойных наружных ненесущих стен (в том числе заполнения каркасов) должны назначаться по расчету на температурно-влажностные воздействия, инсоляцию и солнечную радиацию из условия обеспечения прочности и трещиностойкости кладки при условии выполнения требований, указанных в приложении Д.
Расстояния между вертикальными температурными швами и их положение должны назначаться в проекте с учетом указаний приложения Д и конструктивных требований к шагу их расположения.
Толщину шва следует принимать не менее 10 мм, в заполнении шва следует предусматривать упругие прокладки и атмосферостойкие мастики.
Требования по устройству деформационных швов
Д.4 Горизонтальные швы устраиваются в несущих многослойных стенах со средним слоем из эффективного утеплителя — в облицовочном кирпичном слое, в ненесущих стенах — по всей толщине стены.
Горизонтальные деформационные швы во внутреннем и наружном слоях ненесущих многослойных стен следует выполнять в уровне опорных конструкций (между вышележащей конструкцией и верхним рядом кладки).
Д.5 Горизонтальные швы по высоте здания в облицовке несущих многослойных стен со средним слоем из эффективной теплоизоляции допускается устраивать следующим образом:
первый шов — под перекрытием 2-го этажа;
далее поэтажно, под плитой монолитного железобетонного перекрытия и под консольной балкой, устанавливаемой под сборной железобетонной плитой перекрытия.
Д.6. Вертикальные температурно-деформационные швы устраиваются в лицевом слое многослойных наружных стен, отделенных от основного слоя утеплителя.
Д.7. Рекомендуемые максимальные расстояния между вертикальными температурными швами для прямолинейных участков стен 6 — 7 м. Вертикальные швы на углах здания следует располагать на расстоянии 250 — 500 мм от угла по одной из сторон. При толщине облицовочного слоя 250 мм расстояние между швами может быть увеличено.
При необходимости увеличения расстояния между температурными швами требуется проведение расчетов температурных деформаций с учетом конструктивных особенностей стен, конструкции здания, ориентации его по сторонам света и климатических условий.
Деформационные швы — производство и поставка
Технические предложения по деформационным швам
Для применения на мостах и путепроводах Группа компаний «СК Стройкомплекс-5» поставляет деформационные швы следующих типов:
1. Для перемещений до 20 мм (в мостовых сооружениях с пролетами до 20 м) — деформационные швы в виде резинового Т-образного компенсатора (конструктивная схема), приклеиваемого к бетону или металлу одной из стыкуемых конструкций, заклеиваемого гидроизоляционным материалом (например, мостопластом) и закатываемого армированным геосеткой асфальтобетоном. Деформационные швы ДШТ могут быть использованы в составе щебнемастичных деформационных швов типа «Тормоджойнт» взамен металлических листов перекрытия зазоров. В этом случае такие деформационные швы становятся более надежными.
Деформационные швы ДШТ незаменимы для перекрытия продольных зазоров между пролетными строениями раздельных мостов под разные направления движения и для двухпутных железнодорожных мостов.
Деформационный шов Т-образный
Деформационный шов ДШТ перекрывает зазор между пролетными строениями двухпутного моста
2. Для перемещений до 60 мм – одномодульные деформационные швы ДШС-60 с гибким резиновым компенсатором (конструктивная схема), заделываемым в металлические окаймления в уровне асфальтобетонного покрытия. Предлагаемая конструкция отличается от аналогов применением для заделки компенсатора деформационного шва системы «ласточкин хвост» и использованием металлических деталей с профилем, вытачиваемым из прокатного листа.
Деформационный шов ДШС-60 на Матисовом мосту в Санкт-Петербурге 3. Для перемещений до 80 мм – одномодульные деформационные швы ДШС-80 с гибким резиновым компенсатором (конструктивная схема). Конструкция деформационных швов ДШС-80 аналогична деформационным швам ДШС-60, но в этом случае используется более мощный резиновый компенсатор. Соответственно изменена геометрия окаймлений деформационного шва. Металлоконструкции окаймлений деформационных швов ДШС-60 и ДШС-80 заделываются в бетон пролетного строения и/или устоя с помощью омоноличиваемых анкеров или привариваются к плите металлического пролетного строения с ортотропной плитой. Положительно себя зарекомендовало использование для крепления окаймлений деформационных швов ДШС-60 и ДШС-80 химических анкеров Хилти (конструктивная схема).
Крепление окаймлений деформационного шва химическими анкерами
4. Для перемещений до 120—180 мм предлагаются двух- и трехмодульные деформационные швы (конструктивная схема), аналогичные по конструкции деформационным швам ДШС-60. В отличие от импортных деформационных швов предлагаемые конструкции за счет применения простейших механических синхронизаторов перемещений (типа «пантограф») характеризуются не только простотой изготовления, но и высокой надежностью. При этом все положительные качества импортных деформационных швов (бесшумность, герметичность и др.) сохраняются полностью.
Деформационный шов ДШС-120 на Кольцевой автодороге вокруг Санкт-Петербурга
5. Для перемещений до 160 – 240 мм предлагаются двух- и трехмодульные деформационные швы (конструктивная схема), аналогичные по конструкции деформационным швам ДШС-80. Здесь также используются синхронизаторы перемещений типа «пантограф». Деформационные швы ДШС-160, ДШС-240 и другие, с большим числом модулей, полностью соответствуют линейке деформационных швов, принятой различными инофирмами. Таким образом, эти деформационные швы обеспечивают 100-% импортозамещение.
Сборка трехмодульного деформационного шва
Деформационный шов ДШС-180 на мосту через р. Чусовую на Урале
6. Для перемещений до 400 мм — листовые металлические деформационные швы гребенчатого типа (конструктивная схема) с эластично-антифрикционными прокладками. Предлагаемая конструкция деформационного шва являет собой модернизированное традиционное решение с подпружиненной гребенчатой плитой скольжения. Ближайший аналог — деформационные швы производства ряда западных фирм, в которых гребенчатые пластины крепятся к пролетным строениям и устоям болтами с проезжей части моста. В отличие от аналога предлагаемая конструкция деформационного шва не имеет выступающих на поверхность проезжей части крепежных элементов (установка и подтяжка болтов и тарельчатых пружин производится снизу). Кроме того, каждая гребенчатая пластина соединена с пролетным строением шарниром типа «рояльной петли», что гарантирует сохранение ее в проектном положении даже в случае непредвиденного разрыва стяжных болтов. Эластично-антифрикционные прокладки обеспечивают снижение уровня шума.
Деформационный шов ДШГ на путепроводепо пр. Маршала Жукова в Санкт-Петербурге
Контрольная сборка на заводе гребенчатого деформационного швадля Ладожского моста через р Неву
7. Для применения в качестве деформационно-осадочных швов (конструктивная схема) в подпорных стенах, транспортных и пешеходных тоннелях – трехкулачковые резиновые компенсаторы (гидрошпонки), заделываемые в монолитный бетон конструкций. Комбинация из Т-образных и трехкулачковых резиновых компенсаторов образует систему «ватерстоп» (конструктивная схема) применяемую для гидроизоляции деформационных швов тоннелей и подпорных стенок.
Гидрошпонка на стыке секций открытого тоннеля вдоль набережной Обводного канала в Санкт-Петербурге
8. Для железнодорожных мостов с ездой на балласте, строящихся в обычных условиях и в сейсмоопасных районах, разработаны и согласованы с ОАО «РЖД» деформационные швы с резиновыми компенсаторами на перемещения 60 и 200 мм (конструктивная схема 1, конструктивная схема 2).
Особенностями этих деформационных швов являются:
Деформационный шов ДШС-жд-200 на эстакаде в г. Сочи
9. Наша новая разработка: деформационные швы косые и всесторонне подвижные.
Поставляемые ООО «СК Стройкомплекс-5» деформационные швы типа ДШС позволяют сопрягаемым конструкциям иметь не только продольные взаимные перемещения, но и поперечные в пределах, обозначенных в таблице.
Приведенные в таблице перемещения могут быть реализованы как при косом расположении деформационного шва (схема 1, см. ниже под таблицей), так и в случае двухосных перемещений, когда нет строгой геометрической зависимости поперечных перемещений от продольных (схема 2, см. ниже под таблицей).
+7(926)527-72-74
Экспертиза подпорной стены
На приведенном фото проект подпорной стенки, стрелками указаны участки и узлы не выполненные фактически.
— не восстановлено асфальтобетонное покрытие вдоль подпорной стенки после окончания работ, предусмотренное проектом;
На приведенном фото асфальтобетонное покрытие отсутствует.
— технологический шов, закрывающий зазор между подпорной стеной и стенкой нижнего водоприемного лотка выполнен не по проекту, отсутствует битумная мастика.
На приведенном фото в технологическом шве отсутствует битумная мастика.
(см. Приложение №2, раздел 2, п. А, фото №№1-16)
Прибором УЗК «ПУЛЬСАР-1.1» был определен класс бетона подпорной стены, в соответствии с требованиями ГОСТ 18105-2010, ГОСТ 17624-2012.
П 5.8. При контроле прочности бетона монолитных конструкций в проектном возрасте неразрушающими методами проводят сплошной неразрушающий контроль прочности бетона всех конструкций контролируемой партии. При этом число контролируемых участков должно быть не менее:
— трех на каждую захватку — для плоских конструкций (стен, перекрытий, фундаментных плит);
— одного на 4 м длины (или трех на захватку) — для каждой линейной горизонтальной конструкции (балка, ригель);
— шести на каждую конструкцию — для линейных вертикальных конструкций (колонна, пилон).
П.7.5 Фактический класс бетона по прочности монолитных конструкций Вф при контроле по схеме Г принимают равным 80 % средней прочности бетона конструкций, но не более минимального частного значения прочности бетона отдельной конструкции или участка конструкции, входящих в контролируемую партию:
Вф = 0,8Rm. (13)
Ремонт деформационного шва подпорной стены
Вид на лицевую грань подпорной стены
Разрез по деформационному шву подпорной стены (материалы)
Разрез по деформационному шву подпорной стены (размеры)