составьте таблицу периоды в истории математики

Конспект «История развития математики»

Ищем педагогов в команду «Инфоурок»

История развития математики

С точки зрения выдающегося советского математика академика Андрея Николаевича Колмогорова, история развития математического знания распадается на четыре этапа:

период зарождения математики (примерно до VI – V вв. до н.э.), на протяжении которого был накоплен достаточно большой фактический материал;

период элементарной математики, начинающийся в VI–V вв. до н.э. и завершающийся в конце XVI в. («Запас понятий, с которыми имела дело математика до начала XVII в., составляет и до настоящего времени основу «элементарной математики», преподаваемой в начальной и средней школе»;

охватывающий XVII-XVIII вв. период математики переменных величин, «который можно условно назвать также периодом «высшей математики»;

период современной математики – математики XIX-XX I вв., в ходе которого математикам пришлось «отнестись к процессу расширения предмета математических исследований сознательно, поставив перед собой задачу систематического изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм».

1. Зарождение математики. Уже на самых ранних ступенях развития цивилизации необходимость счета общеупотребимых предметов привела к созданию простейших понятий арифметики натуральных чисел. Затем постепенно вырабатываются приемы выполнения простейших арифметических действий над натуральными числами, возникают системы счисления.

Вавилон. В 1849-1850 гг. в развалинах древнего города Ниневия была найдена древнейшая библиотека. Выяснилось, что почти за 2000 лет до н.э. были составлены таблицы умножения, квадратов последовательных целых чисел. Для решения квадратных уравнений народы Месопотамии разработали систему действий, эквивалентную современной формуле. Но не были найдены рассуждения, приведшие к используемому алгоритму, т. е. математику Древнего Вавилона можно было назвать рецептурной.

Следы вавилонской нумерации сохранились до сих пор: 1 час = 60 минут, 1 минута = 60 секунд; аналогично при делении окружности на градусы, минуты, секунды. Такая традиция пришла из астрономии. Вавилоняне проводили систематические наблюдения за звездным небом, составляли календарь, вычисляли периоды обращения Луны и всех планет, могли предсказывать солнечные и лунные затмения. Эти знания астрономии впоследствии перешли к грекам, которые вместе с астрономическими таблицами заимствовали и шестидесятеричную нумерацию.

Египет. Сохранившиеся древнейшие математические тексты Древнего Египта, относящиеся к началу 2-го тыс. до н. э., состоят из примеров решения отдельных задач или рецептов для их решения, которые иногда удаётся понять, лишь анализируя числовые данные в текстах. Эти решения часто сопровождаются проверкой ответа. Математическая теория в смысле системы взаимосвязанных и доказываемых общих теорем вовсе не существовала. Об этом свидетельствует, например, то, что точные решения употреблялись без всякого отличия от приближённых. Тем не менее, запас установленных математических фактов был, в соответствии с высокой строительной техникой, сложностью земельных отношений, потребностью в точном календаре и т. п., довольно велик. Египтяне создали своеобразный и довольно сложный аппарат действий с дробями, требовавший специальных вспомогательных таблиц.

Геометрия сводилась к правилам вычисления площадей и объёмов. Правильно вычислялись площади треугольника и трапеции, объёмы параллелепипеда и пирамиды с квадратным основанием. Наивысшим известным нам достижением египтян в этом направлении явилось открытие способа вычисления объёма усечённой пирамиды с квадратным основанием.

Появляются первые попытки анализа роли и значения математики в научном познании. Так, например, пифагорейцы считали число основой и началом всего существующего. Они полагали, что задача научного познания состоит в нахождении в вещах внешнего мира закономерностей, присущих числам. На позициях математизации действительности стоял также греческий философ Платон. По его мнению, математические формы являются строительными кирпичиками Вселенной.

Родоначальником применения математики для изучения природных явлений был Архимед, достижения которого в исследованиях механики и физики (архимедов винт, метательные машины, исследования о равновесии и устойчивости плавающих тел) сочетались с прозорливостью в области математики. Его труды – яркий образец развития прикладных математических знаний в древности. В сочинениях Архимеда мы находим также зачатки применения метода интегральных сумм при решении практических задач. Архимед сформулировал и доказал теорему о сумме квадратов членов арифметической прогрессии. Основной заслугой Архимеда в геометрии явилось определение разнообразных площадей, объёмов и центров тяжести (шара, параболоида и их сегментов и т.д.); архимедова спираль является лишь одним из примеров изучавшихся в III в. до н. э. трансцендентных кривых.

Для математики поздней античности характерно выдвижение на первое место практических вычислительных методов и задач. Это свойственно работам Герона, Птоломея.

Математика в Западной и Центральной Европе стала на путь самостоятельного развития только с наступлением эпохи Возрождения в XVI в. Так, итальянцы Н. Тарталья (ок. 1530) и Л. Феррари (1545) решили в общем виде кубические уравнения и уравнения четвертой степени. В этот же период впервые начинают оперировать с мнимыми числами (Дж. Кардано, Р. Бомбелли). Складывается алгебраическое буквенное исчисление (Виет, 1591г.). В Англии Непер изобрел логарифмы как средство для астрономических вычислений (1614г.), Бриг составил первые таблицы логарифмов. Тогда же в Европе появляется и общая формула бинома Ньютона и т.д.

Математическое образование в России находилось в IX — XIII вв. на уровне наиболее культурных европейских стран. Затем оно было надолго задержано монгольским нашествием. Наиболее древнее, известное нам математическое исследование относится к 1130г. и принадлежит новгородскому монаху Кирику. Оно посвящено арифметико-хронологическим расчётам, которые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий (определения на каждый год дня наступления праздника пасхи), сводящуюся в своей математической части к решению в целых числах неопределённых уравнений первой степени.

Период элементарной математики заканчивается в Западной Европе в начале XVII в., когда центр тяжести математических интересов переносится в область математики переменных величин.

Вслед за Ньютоном и Лейбницем в области анализа и его приложений большую роль сыграли братья Бернулли, Эйлер, Лагранж, Лаплас и другие крупные математики того времени.

4. Современная математика. Все созданные в XVII и XVIII вв. разделы математического анализа продолжали с большой интенсивностью развиваться в XIХ и XХ вв. Чрезвычайно расширился за это время и круг их применения к задачам, выдвигаемым естествознанием и техникой. Однако помимо этого количественного роста, с конца XVIII и в начале XIХ вв. в развитии математики наблюдается и ряд существенно новых черт.

В деле обоснования анализа и уточнения его основных понятий важную роль сыграла созданная немецким математиком Г. Кантором (1845-1918) теория множеств.

Таким образом, в результате как внутренних потребностей математики, так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых математикой, чрезвычайно расширяется; в него входят отношения, существующие между множествами, элементами произвольной группы, векторами, операторами в функциональных пространствах, все разнообразие форм пространств любого числа измерений и т. п.

Существенная новизна начавшегося в ХIХ в. этапа развития математики состоит в том, что вопросы необходимого расширения круга подлежащих изучению количественных отношений и пространственных форм становятся предметом сознательного и активного интереса математиков. Если прежде, например, введение в употребление отрицательных и комплексных чисел и точная формулировка правил действий с ними требовали длительной работы, то теперь развитие математики потребовало выработки приемов сознательного и планомерного создания новых геометрических и алгебраических систем.

В начале ХIХ в. происходит новое значительное расширение области приложений математического анализа. Если до этого времени основными разделами физики, требовавшими большого математического аппарата, оставались механика и оптика, то теперь к ним присоединяются электродинамика, теория магнетизма и термодинамика. Получает широкое развитие механика непрерывных сред. Быстро растут и математические запросы техники. В качестве основного аппарата новых областей механики и математической физики усиленно разрабатываются теории обыкновенных дифференциальных уравнений, теория дифференциальных уравнений с частными производными и уравнений математической физики.

Существенным дополнением к методам дифференциальных уравнений при изучении природы и решении технических задач являются методы теории вероятностей. Если в начале ХIХ в. главными потребителями вероятностных методов были теория артиллерийской стрельбы и теория ошибок, то в концу ХIХ и в начале ХХ вв. теория вероятностей получает много новых применений благодаря созданию теории случайных процессов и развитию аппарата математической статистики.

Теория чисел, представлявшая собрание отдельных результатов и идей, с ХIХ в. развивалась в различных направлениях как стройная теория.

Элементарная и проективная геометрия привлекают внимание математиков главным образом под углом зрения изучения их логических и аксиоматических основ. Но основными отделами геометрии, где сосредотачиваются наиболее значительные научные силы, становятся дифференциальная геометрия, алгебраическая геометрия, риманова геометрия.

Практическое использование результатов теоретического математического исследования требует получения ответа на поставленную задачу в числовой форме. Между тем даже после исчерпывающего теоретического разбора задачи это часто оказывается весьма трудным делом. Зародившиеся в конце ХIХ и в начале ХХ вв. численные методы анализа и алгебры выросли в связи с созданием и использованием ЭВМ в самостоятельную ветвь математики – вычислительную математику. Выдающееся значение для создания кибернетики и современной вычислительной математики имели труды Н.Винера, К Шеннона, Дж. Неймана, русских и советских математиков А.М. Ляпунова, А.Я. Хинчина, А.Н. Колмогорова и др.

Данный краткий обзор истории развития математических идей и методов и их приложений позволяет сделать следующие обобщения и выводы.

Прежде всего, можно заметить, что в ходе исторического развития происходило постоянное расширение предмета исследования математики, создавались новые понятия, возрастал интерес к анализу основ, взаимозависимостей, способов доказательств.

Второй важный вывод состоит в том, что современная математика переходит от изучения только «пространственных форм и количественных отношений действительного мира» к исследованию скоплений абстрактных математических структур. Уровень абстракции предмета изучения постоянно возрастает.

В ходе развития математики и ее приложений постепенно расширяется их взаимосвязь с практической жизнью и потребностями других наук. Этот процесс развивается в двух направлениях: с одной стороны, усиливается влияние практической жизни и других наук (главным образом естественных) на развитие математики, с другой — расширяется сфера приложений математики, ее средств и методов в различных областях науки и техники. Эти две стороны связи математики с общественной жизнью и с другими науками всегда взаимообусловлены.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *