модуль упругости и модуль деформации бетона в чем отличие
Модуль деформации бетона. Начальный модуль упругости бетона. Модуль полных деформаций. Модуль упругопластичности бетона
К определению модуля деформации бетона
Начальный модуль упругости бетона – отношение напряжений в бетоне к деформациям, вызванным данными напряжениями при напряжениях близких к нулю или столь быстром загружении, что пластические деформации не успевают проявиться в заметной мере. Геометрически начальный модуль упругости бетона определяется по диаграмме как арктангенс угла наклона касательной к оси абсцисс в точке с координатами (0;0).
Модуль полных деформаций – отношение напряжений в бетоне к полным деформациям (сумме упругих и пластических деформаций) вызванных данным напряжением. Геометрически модуль полных деформаций определяется по диаграмме как арктангенс наклона секущей к оси абсцисс в любой точке диаграммы.
Модуль упругопластичности бетона – отношение приращений напряжений в бетоне к приращению деформаций, вызванных данным изменением напряжений. Геометрически начальный модуль упругости бетона определяется по диаграмме как арктангенс угла наклона касательной к оси абсцисс в любой точке диаграммы. Примечательно, что в отличие от начального модуля упругости и модуля полных деформаций, данный модуль упругопластичности бетона может быть и отрицательной величиной (на ниспадающей ветви диаграммы).
Что такое модуль упругости бетона?
При проектировании строительной конструкции стоит задача спрогнозировать ее поведение при заданных нагрузках и внешних условиях. Бетон воспринимает значительные усилия, поэтому важный этап расчета — определение деформаций и прогибов при статическом нагружении.
В расчете железобетонных конструкций по второй группе предельных состояний применяют физическую величину, называемую модулем упругости бетона, или модулем Юнга. Он характеризует свойства твердого вещества в зоне упругих деформаций.
Понятие модуля упругости
Все твердые тела при возрастании нагрузки подвержены деформациям. Причем сначала изменения носят обратимый характер, а их зависимость от приложенных усилий — линейная.
Тело восстанавливает размеры и форму после прекращения внешнего воздействия. Здесь применяется закон Гука, где абсолютное сжатие или удлинение прямо пропорционально приложенной силе с коэффициентом пропорциональности, равным модулю упругости.
С ростом нагрузки тело вступает в фазу необратимых изменений, где деформации носят неупругий пластичный характер. В этой зоне удлинение или сжатие образцов при испытаниях происходят без значительного увеличения внешней силы.
В дальнейшем бетонный образец реагирует на усилия нелинейно — деформации растут без увеличения нагрузки. Это — зона ползучести. Связи внутри материала разрушаются, конструкция теряет прочность.
В рыхлых непрочных смесях присутствует стадия псевдопластических деформаций, когда с уменьшением нагрузки изменения размеров нарастают. Появляются отслоения, трещины и другие деструкции тела бетона.
Последующее увеличение усилий растяжения или сжатия приводят к полному разрушению образца.
Линейная зависимость между напряжением и деформациями в фазе упругости выражается формулой:
где E — модуль упругости (Па);
εпред — относительная деформация, т.е. отношение абсолютного удлинения к начальному размеру (∆l/l0).
Модуль упругости определяют опытным путем. При испытаниях строят диаграмму зависимости деформаций от усилий, прикладываемых к образцу. Тангенс угла кривизны на участке упругих изменений размеров и есть искомая величина. Значения для разных классов и марок бетона занесены в таблицы.
График зависимости деформаций от напряжений при постепенном загружении
Зная E и действующие усилия, рассчитывают упругие абсолютные деформации бетона в конструкции по формуле:
где σ — напряжение, равное отношению внешней силы к площади сжатой или растянутой зоны сечения (P/F).
От чего зависит модуль упругости бетона?
Упругие свойства бетона зависят от факторов:
Заполнители
Бетон представляет собой конгломерат из двух составляющих — цементного камня и заполнителей. В неоднородной структуре возникает сложное напряженное состояние. Более жесткие частицы воспринимают основную часть нагрузки, а вокруг пор и пустот образуются участки с поперечными растягивающими усилиями.
Крупный заполнитель, обладая высоким модулем Юнга, увеличивает упругие свойства бетона. Мелкие пылеватые частицы, поры и пустоты снижают их.
Класс бетона
Температура и радиация
Повышение температуры окружающей среды, интенсивности солнечной радиации приводят к уменьшению упругих свойств и росту деформаций. Связано это с увеличением внутренней энергии бетона, изменению траекторий движения молекул в твердом теле, линейному расширению материала, и, как следствию, усилению пластичности.
Разницу не учитывают при колебаниях в пределах 20°С. Большие температурные изменения существенно влияют на деформацию бетонных конструкций. В таблице СП 63.13330.2012 указаны величины модулей упругости в зависимости от температуры.
Влажность
Колебания влажности воздуха приводят к изменению упругих свойств материала. В расчетах применяют коэффициент ползучести φ. Чем больше содержание водяных паров в окружающей среде, тем ниже показатель и соответственно меньше пластические деформации конструкции.
Примечание: Относительную влажность воздуха принимают по СП 131.13330.2012 как среднемесячную влажность самого теплого месяца года в регионе строительства.
Время приложения нагрузки
Модуль упругости зависит от времени действия нагрузки. При мгновенном нагружении конструкции деформации пропорциональны величине внешних сил. При длительных напряжениях величина E уменьшается, изменения развиваются по нелинейной зависимости и суммируются из упругих и пластичных деформаций.
Условия набора прочности
При проведении испытаний замечено, что у бетона естественного твердения модуль упругости выше, чем при обработке материала пропариванием при атмосферном давлении или в автоклавных установках.
Это объясняется тем, что изменение условий набора прочности приводит к образованию большего количества пор и пустот из-за неравномерного температурного расширения объема, ухудшения качества гидратации цементных зерен. Такой бетон обладает более низкими упругими свойствами по сравнению с затвердевшим в нормальных условиях.
Возраст бетона
Свежеуложенный бетон набирает прочность в течение 28 суток. Но даже по истечении этого времени материал при нагрузке обладает одновременно упругими и пластическими свойствами. Наибольшей твердости он достигает примерно через 200-250 суток. Показатель E в этом возрасте максимальный, соответствующий марочной прочности.
Армирование конструкций
Для восприятия растягивающих и сжимающих усилий в железобетон помещают каркасы или сетки из арматуры классов АI, AIII, А500С, Ат800, а также из композитов или древесины.
Применение армирования увеличивает упругость, прочность конструкции на сжатие и на растяжение при изгибе, препятствует образованию усадочных и деформационных трещин.
Способы определения
Модуль упругости бетона определяют:
Механический способ
Исследование первым методом проводят согласно ГОСТ 24452-80. Изготавливают образцы с сечением в виде квадрата или круга с соотношением высоты к диаметру (ширине), равным 4.
Образцы сериями по три штуки выбуривают, высверливают или выпиливают из готовых изделий, либо набивают формы согласно ГОСТ 10180-78. До начала испытаний призмы или цилиндры выдерживают под влажной тканью.
Для определения модуля упругости бетона используют прессы со специальными базами для измерения деформаций. Они состоят из приборов, расположенных под разными углами к граням образца. Индикаторы крепят к стальным рамкам или приклеенным опорным вставкам.
Если испытания проводят для конструкций, работающих при повышенной влажности или высокой температуре, выполняют специальную подготовку по ГОСТ 24452-80.
Испытания проводят по схеме:
На основе исследований можно судить о начальном модуле упругости бетона. Эта величина характеризует свойства материала при нагрузке, в пределах которой в образцах возникают обратимые изменения. Показатель обозначается как Eb, его значение для каждого класса бетона внесено в таблицы строительных норм и маркировку изделий.
Ультразвуковой способ
Применяется для исследования конструкций без их локального разрушения. При повышенной влажности такой метод определяет модуль упругости с погрешностью 15-75%, так как скорость распространения ультразвуковых колебаний в водной среде возрастает.
Чтобы избежать ошибок при измерениях, разработан метод определения модуля Юнга с учетом влажности бетона. Он основан на опытных испытаниях серий образцов с различной водонасыщенностью.
Нормативные и расчетные значения сопротивления бетона получают, используя корректирующие коэффициенты с учетом условий работы конструкции. Методика расчета описана в СП 63.13330.2012.
Модуль упругости и коэффициент Пуассона бетона (понятие и значение)
Модуль упругости бетона — это коэффициент пропорциональности между нормальным напряжением и соответствующей ему относительной продольной упругомгновенной деформацией при σ1=0,3Rпр при осевом сжатии образцов. (ГОСТ 24452-80 Бетоны, Rпр — призменная прочность бетона)
Значение начального модуля упругости тяжелого бетона при сжатии и растяжении приведено в СП 63.13330.2018 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. Данный СП действующий и обязательных к применению (см. пост.985)
Согласно таблицы 6.11 п.6.1.15 СП 63.13330.2018 для тяжелого бетона:
Бетон | Значение модуля упругости бетона при сжатии, Eb, МПа |
B10 | 19000 МПа |
В12,5 | 21500 МПа |
В15 | 24000 МПа |
В20 | 27500 МПа |
В25 | 30000 МПа |
В30 | 32500 МПа |
В35 | 34500 МПа |
При продолжительном действии нагрузки модуль упругости бетона определяется по формуле:
-коэффициент ползучести бетона, принимаемый по таблице 6.12 п.6.1.16
Согласно таблицы 6.12 п.6.1.16 СП 63.13330.2018 для тяжелого бетона B10-B35:
Относительная влажность воздуха окружающей среды, % | В10 | В15 | В20 | В25 | В30 | В35 |
Выше 75 | 2,8 | 2,4 | 2,0 | 1,8 | 1,6 | 1,5 |
40-75 | 3,9 | 3,4 | 2,8 | 2,5 | 2,3 | 2,1 |
Ниже 40 | 5,6 | 4,8 | 4,0 | 3,6 | 3,2 | 3,0 |
Примечание: Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.
Согласно п.6.1.17 СП 63.13330.2018 коэффициент поперечной деформации бетона (коэффициент Пуассона) допускается принимать 0,2.
Что такое модуль упругости бетона
Одной из основных задач проектирования является рациональный выбор сечения профиля и материала строительной конструкции. Необходимо найти золотую середину, при которой выбранный размер при оптимальной массе будет под воздействием расчётных нагрузок обеспечивать сохранение формы. При этом нельзя допустить перерасход материала и соответственно увеличение финансовых затрат. С этой целью технологами был разработан модуль упругости бетона. От чего зависит показатель и как проходят испытания, расскажем сегодня в обзоре Homius.
Модуль упругости: что это такое и его единицы измерения
Ещё в середине XVII века во многих странах учёные начали заниматься исследованием материалов. Они применяли различные методики и технологии для определения характеристик прочности. Учёный из Англии Роберт Гук сформулировал главные правила удлинения упругих тел под воздействием нагрузки, благодаря ему было введено понятие модуля Юнга.
Согласно закону Гука, абсолютное растяжение/сжатие прямо пропорционально приложенной нагрузке с коэффициентом пропорциональности. Эта величина и называется модулем упругости и измеряется в следующих единицах:
Величина обозначается буквой Е и имеет различные величины, а также зависит от разных факторов. В лабораторных исследованиях были получены коэффициенты, которые сведены в общие таблицы. Характеристики показателя определяются согласно стандарту 52-101-2003.
Факторы, влияющие на модуль Юнга
Модуль Юнга – это основная характеристика бетона, определяющая его прочность. Благодаря величине проектировщики проводят расчёты устойчивости материала к различным видам нагрузок. На показатель влияют многие факторы:
ФОТО: dostroy.com Модуль упругости позволяет проектировщикам правильно рассчитывать нагрузку
Качество и количество заполнителей
Качество бетона зависит от его заполнителей. Если компоненты имеют низкую плотность, соответственно, модуль Юнга будет небольшим. Упругость материала возрастает в несколько раз, если применяются тяжёлые наполнители.
ФОТО: russkaya-banja.ru Крупные компоненты увеличивают характеристики упругости
ФОТО: ivdon.ru График зависимости предела прочности материала от цементного камня
Класс материала
На коэффициент влияет и класс бетона: чем он ниже, тем меньше значение модуля упругости. Например:
ФОТО: buildingclub.ru Зависимость от класса бетона
Как влияют на показатель влажность и температурные значения
На рост деформаций и уменьшение упругих свойств материала влияют:
Под воздействием негативных факторов окружающей среды внутренняя энергия материала увеличивается, это приводит к линейному расширению бетона и соответственно, к увеличению пластичности.
Важно! Понижение температурных колебаний от 20 °C не учитывают в расчётах.
На ползучесть материала оказывает влажность, приводящая к изменению упругих характеристик. Чем выше содержание водяных паров, тем ниже коэффициент.
ФОТО: betonpro100.ru Влияние влажности на ползучесть бетона
Время воздействия нагрузки и условия твердения смеси
На показатель упругости влияет время воздействия нагрузки:
Во время проведения исследований было отмечено, если бетон твердеет естественным способом, модуль упругости у него выше в отличие от пропаривания материала в различных условиях. Это объясняется тем, что при использовании внешних условий в бетоне образуются пустоты и поры в большом количестве, ухудшающие его упругие свойства.
ФОТО: udarnik.spb.ru Зависимость модулей упругости от разных факторов
Возраст бетона и армирование конструкции
Прочность бетона находится в прямой зависимости от его возраста, со временем показатель только увеличивается. Ещё один фактор, положительно влияющий на модуль упругости бетона, – армирование, которое препятствует деформации материала.
ФОТО: 63-ds.netsamara.ru Для конструкций, которые будут эксплуатироваться под большими нагрузками, необходима укладка металлической решётки
Способы определения модуля упругости
Определить модуль упругости можно двумя способами:
Механический способ
Механическое испытание проводят согласно стандарту СП 24452-80.
ФОТО: pinterest.co.uk Механическое испытание бетона на прочность
Материалы и инструменты
Для испытания принимаются квадратные или круглые образцы, их соотношение между высотой и шириной (сечением) должно быть равно четырём. Изделия сериями по 3 штуки выпиливают или вырезают из готовых конструкций либо отливают в формах согласно стандарту 10180-78. После этого их помещают под влажную материю до начала испытаний.
Испытания проводят на специальном оборудовании – прессе, состоящем из приборов, размещённых под разными направлениями по отношению к граням образца бетона. К рамкам из металла или опорным вставкам прикреплены индикаторы, измеряющие уровень деформации.
ФОТО: tdzhil.ru Для испытаний нужна определённая партия образцов
ФОТО: masterabetona.ru Пресс для проведения испытаний
Схема испытания образцов
Испытания проводят по такой схеме:
По результатам испытаний можно определить начальный модуль упругости. Показатель характеризует свойства бетона под воздействием нагрузки, при которой начинают происходить изменения.
ФОТО: mosstroylab.ru Сдвиг и разрушение заготовки
На видео представлен механический способ испытания образцов:
Что такое модуль упругости бетона?
Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона. Различные марки композита отличаются эксплуатационными характеристиками. Он способен воспринимать повышенные нагрузки, однако внешние факторы вызывают его разрушение. Один из важнейших параметров, определяющих устойчивость возведенных зданий и продолжительность их эксплуатации – это модуль упругости бетона. На его величину влияет ряд факторов. Рассмотрим детально параметр, характеризующий способность бетона воспринимать сжатие и растяжение.
Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона
Модуль упругости бетонных конструкций – важный параметр
Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость. Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.
В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:
Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона. Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.
Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона
Какие факторы определяют модуль упругости бетона В25 и бетонов других классов
На величину модуля упругости влияют следующие факторы:
Модуль зависит от комплекса факторов. Их следует учитывать при выполнении прочностных расчетов. Независимо от упругости массива, помните, что наличие арматурной решетки значительно повышает сопротивляемость бетона действующим нагрузкам.
Для усиления используйте арматуру повышенного класса. Не забывайте, что значение нормативного сопротивления для арматуры класса A6 выше, чем величина сопротивления для арматуры класса А1.
Модуль упругости бетона – таблица
Коэффициент, характеризующий упругость материала, остается неизменным до определенного температурного порога. Проследить зависимость изменения модуля упругости от марки материала и температурных условий поможет таблица. Например, для материалов, у которых температура плавления 300 °С, после дальнейшего нагрева снижается способность противодействовать упругой деформации. И хотя бетон не плавится, под воздействием повышенной температуры, вызванной пожаром, нарушается структура бетонного массива и он теряет свои свойства.
Модуль упругости бетона – таблица
Разработанная согласно Своду правил 52 101 2003 таблица поможет определить величину начального модуля упругости для различных классов бетона:
Зная класс материала, а также имея информацию о плотности стройматериала и технологии изготовления, несложно определить величину параметра по специальной таблице.
Как определяется модуль упругости бетона В20
Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.
Диаграмма модуля упругости бетона в20
В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.
Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:
Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.
Уже после возведения конструкции или сооружения фактически провести достоверные комплексные испытания бетона на прочность, морозостойкость, влажность и влагопроницаемость можно только в лаборатории. В рамках неразрушающих испытаний есть возможность грубо определить класс бетона ультразвуковыми методами диагностики.
И если после такой экспертной проверки образца возникают сомнения в однозначной классификации, то для оценки прочностных характеристик бетона берется проба – керн непосредственно на объекте строительства.
Для практического определения коэффициента упругости материала и фактического документального подтверждения проводится независимая экспертиза бетона.
Очень часто недобросовестные подрядчики экономят финансовые средства на материалах и не закупают / не применяют на объекте бетон, установленного проектом класса. Как следствие, меньший модуль упроугости приводит к преждевременному разрушению сооружения.
Рекомендации
Профессиональные строители рекомендуют для повышения величины модуля упругости применять различные технологии изготовления. Рассмотрим, как изменяет свойства бетон б15, изготовленный различными методами:
Аналогичная тенденция прослеживается для других классов бетона, включая популярный b25 бетон.
С рассматриваемой точки зрения прослеживаются следующие тенденции:
Используя табличные значения, несложно определить модуль сопротивления, и выбрать класс бетона для выполнения конкретных задач.
Заключение
Понимание физической сущности параметра упругости бетонного материала позволит правильно выбрать класс бетона для обеспечения необходимой прочности и долговечности строительных конструкций. Желая подробно ознакомиться с методикой расчета бетонных конструкций, изучите внимательно Свод правил 52 101 2003, положения которого распространяются на строительные конструкции из бетона и железобетона.