модуль iot что это
Что такое IoT и что о нем следует знать
Интернет вещей (Internet of Things, IoT) — это множество физических объектов, подключенных к интернету и обменивающихся данными. Концепция IoT может существенно улучшить многие сферы нашей жизни и помочь нам в создании более удобного, умного и безопасного мира. Примеры Интернета вещей варьируются от носимых вещей, таких как умные часы, до умного дома, который умеет, например, контролировать и автоматически менять степень освещения и отопления. Также ярким примером служит так называемая концепция умного предприятия (Smart Factory), которое контролирует промышленное оборудование и ищет проблемные места, а затем перестраивается так, чтобы не допустить поломок. Интернет вещей занимает важное место в процессе цифровой трансформации в компаниях. Прогнозируется, что к 2030 году количество подключенных к сети устройств вырастет примерно до 24 млрд с годовой выручкой до 1,5 трлн долларов.
История происхождения
Термин «Интернет вещей» был впервые употреблен в 1999 году Кевином Эштоном, предпринимателем и соучредителем центра Auto-ID Labs (независимая сеть лабораторий и исследовательская группа в области сетевой радиочастотной идентификации и новых сенсорных технологий) при Массачусетском технологическом институте. Эштон состоял в команде, которая сумела изобрести способ подключения объектов к интернету с при помощи технологии RFID. RFID-метка — это метка идентификации, позволяющая идентифицировать объекты посредством радиосигналов; на нее можно нанести определенную информацию, а позднее считать устройством.
В 2012 году произошли значительные изменения датчиков, что привело к ускорению рыночной готовности IoT, и для многих компаний это означало, что цифровая трансформация набирает обороты. Технологическое совершенствование сделало возможным появление МЭМС — микроэлектромеханических систем (миниатюрное устройство, изготовленное методом микрообработки как из механических, так и из электрических компонентов). Благодаря этому датчики уменьшились настолько, что их стало возможно фиксировать, например, на одежде.
История развития IoT. Источник изображения: https://www.avsystem.com/blog/what-is-internet-of-things-explanation/
Из чего состоит IoT? Архитектура
Для простоты попробуем разбить стек технологий IoT на четыре технологических уровня и рассмотреть их раздельно.
Конечные устройства
Устройства — это объекты, которые фактически образуют «вещи» (Things) в Интернете вещей. Они играют роль интерфейса между реальным и цифровым мирами и принимают разные размеры, формы и уровни технологической сложности в зависимости от задачи, которую они выполняют в рамках конкретного развертывания IoT. Будь то микрофоны размером с булавочную головку или внушительного размера машины, практически любой материальный объект можно превратить в подключенное устройство путем добавления необходимых элементов (датчиков или приводов вместе с соответствующим программным обеспечением).
Программное обеспечение
Это то, благодаря чему подключенные устройства можно назвать «умными». Программное обеспечение отвечает за связь с облаком, сбор данных, интеграцию устройств и за анализ данных в реальном времени. Также оно предоставляет возможности для визуализации данных и взаимодействия с системой IoT.
Коммуникации
Уровень коммуникации включает в себя как решения для физического подключения (сотовая и спутниковая связь, LAN), так и специальные протоколы, используемые в различных средах IoT (ZigBee, Thread, Z-Wave, MQTT, LwM2M). Выбор подходящего коммуникационного решения — одна из жизненно важных частей при построении каждой IoT-системы. Выбранная технология будет определять не только способы отправки и получения данных из облака, но способы связи со сторонними устройствами.
Платформа
Устройства способны «ощущать», что происходит вокруг и сообщать об этом пользователю через определенный канал связи. IoT-платформа — это место, где все эти данные собираются, анализируются и передаются пользователю в удобной форме. Платформы могут быть установлены локально или в облаке. Выбор платформы зависит от требований конкретного проекта IoT и многих факторов: архитектура и стек технологий, надежность, параметры настройки, используемые протоколы, аппаратная независимость, безопасность, эффективность, стоимость.
Ниже можно рассмотреть подробнее составляющие трех уровней IoT: конечных устройств (вещей), сети, облака.
Типовая архитектура IoT-системы. Источник изображения: https://ru.rsdelivers.com/campaigns/InternetofThings/internet-of-things
Безопасность
Одновременно с тем фактом, что IoT-системы несут в себе значительную бизнес-ценность, интеллектуальные объекты также становятся уязвимы для киберпреступности, в результате которой может происходить утечка данных, в том числе и конфиденциальной информации. Несмотря на то, что поле работы с вопросом безопасности остается огромным, сейчас существуют решения, позволяющие осуществлять развертывание IoT более надежно. Например, для решения проблемы устаревания программного обеспечения устройств, есть возможности эффективных стратегий автоматическиого обновления.
Благодаря SOTA (Software Over the Air) «обновление по воздуху» и FOTA (Firmware Over the Air) — «прошивка по воздуху», программное обеспечение подключенных устройств и настройки можно обновлять с помощью беспроводной связи.
Примеры областей применения IoT
IoT применим в разных отраслях для различных целей: отслеживания потребительского поведения в режиме реального времени, улучшения качества работы машин и систем, нахождение инновационных методов работы в рамках цифровой трансформации и многое другое.
Розничная торговля
Среди примеров приложений IoT в сфере розничной торговли можно встретить множество случаев использования интеллектуальных устройств для повышения качества обслуживания в магазинах. В частности, различные приложения IoT здесь означают, что возможности использования смартфонов (на основе технологии Beacon — миниатюрных маячков) облегчают общение между розничными продавцами и покупателями, а наиболее востребованные товары и услуги появляются перед глазами клиентов в нужном месте. Кроме того, интеллектуальная розничная торговля открывает возможности для приложений IoT с точки зрения точной рекламы, улучшения цикла цепочки поставок и фактического анализа моделей спроса. Также приложения IoT уже включают приложения для платежей NFC и интеллектуальных покупок. И конечно, нельзя не упомянуть RFID-метки для маркировки товара, которые обеспечивают моментальный и точный сбор информации, что помогает непрерывно отслеживать перемещение товаров, упростить процесс инвентаризации и в целом сократить количество ошибок.
Источник изображения: https://www.pochta.ru/support/post-rules/rfid
Производство
Благодаря IoT производство может получать общую картину о процессах производства и состоянии продукта на всех этапах — от поставки сырья до отгрузки готового продукта.
С помощью датчиков, установленных на заводском оборудовании и в складских помещениях, анализа больших данных и прогностического моделирования (predictive modeling) можно предотвратить множество ошибок, ведущих к простою и убыткам, максимизировать производительность, уменьшить гарантийные расходы и в целом улучшить качество клиентского сервиса.
Здравоохранение
С помощью технологии IoMT (The Internet of Medical Things, Интернет медицинских вещей) в режиме реального времени происходит сбор потоков малых данных из медицинских сетевых и других носимых устройств, отслеживающих различные физиологические моменты, связанные со здоровьем пациентов — движения, динамика сна, сердечный ритм, аллергические реакции и прочее. Собранные данные помогают врачам в постановке точных диагнозов, построении плана лечения, повышают безопасность пациентов, упрощают уход за ними, дают возможность непрерывного мониторинга состояния тяжелобольных пациентов.
Применение Интернета вещей способствует созданию более персонализированного подхода к анализу состояния здоровья и более последовательных стратегий борьбы с болезнями.
Ключевые моменты в сфере здравоохранения, которые можно улучшить с помощью IoT. Источник изображения: https://evercare.ru/news/kak-internet-medicinskikh-veschey-vliyaet-na-zdravookhranenie
Энергетика
Здесь с помощью IoT конструкция электрических сетей меняет правила потребления, автоматически собирая данные и обеспечивая мгновенный анализ циркуляции электроэнергии. В результате этого и клиенты, и поставщики лучше понимают, как оптимизировать использование ресурса.
Заключение
Революция в области Интернета вещей представляется важной для развития бизнеса, и это может относиться к любому типу предприятия. Будь то выращивание устриц или создание системы управления движением, самое ценное в технологической концепции IoT — это то, что он открыт к новым вызовам, и в нем достаточно возможностей для реализации практически любой бизнес-идеи.
Прямо сейчас в OTUS открыт набор на курс «Разработчик IoT». Приглашаем на бесплатный вебинар, в рамках которого наши эксперты расскажут еще больше о том, что такое интернет вещей и где он применяется, а также о карьерных перспективах в данной сфере.
NB-IoT, Narrow Band Internet of Things. Общая информация, особенности технологии
Здесь описывается NB-IoT с точки зрения оконечных устройств и простых пользователей. Так как информации много, то разобью её на несколько частей. В этой части обсудим общую информацию, особенности технологии NB-IoT и состояние на начало 2019 г.
NB-IoT (Narrow Band Internet of Things) – технология сотовой связи на основе LTE, предназначенная для стационарных устройств с низкими объемами передаваемых данных и малым потреблением. Ассоциация GSM обещает, что устройства NB-IoT будут дешевыми и (при определенных условиях) смогут работать от обычных батареек до 10 лет. Интересно, что ассоциация также описывает NB-IoT как технологию, созданную в сжатые сроки в ответ на запросы пользователей и конкуренцию со стороны аналогичных проприетарных решений:
https://www.gsma.com/iot/wp-content/uploads/2018/04/NB-IoT_Deployment_Guide_v2_5Apr2018.pdf
NB-IoT относится с так называемому CIoT, Cellular IoT (по терминологии 3GPP) или MIoT, Mobile IoT (по терминологии GSMA) и продвигается операторами сотовой связи и производителями соответствующего оборудования. Узкополосным (Narrow Band) этот вид связи назвали по сравнению с «традиционным» LTE, где используются существенно более широкие полосы частот (3, 5, 10, 15, 20 МГц). Ширина частотного канала NB-IoT составляет 200 кГц.
Несколько слов про CIoT (MIoT)
На данный момент CIoT (MIoT) разветвляется на 2 направления: NB-IoT и LTE-M (также называемый eMTC или LTE Cat.M).
NB-IoT ориентирован скорее на неподвижные (стационарные) устройства, так как в этом режиме не поддерживается автоматическое переключение между сотами (handover). При перемещении в другую соту устройству NB-IoT придется снова регистрироваться в сети. Таким образом, NB-IoT предназначается в первую очередь для таких приложений, как автоматический сбор показаний со счетчиков, датчиков, дистанционное управление уличным освещением и т.п. В отличие от NB-IoT, другая «ветка» CIoT – LTE-M – поддерживает как переключение между сотами, так и обеспечивает в несколько раз большие скорости приема/передачи.
Преимущества и недостатки NB-IoT
Как обычно, преимущества и недостатки напрямую связаны друг с другом: если где-то прибыло, то где-то убыло. Здесь просто перечислю их с небольшими комментариями, а детали обсудим позже.
Преимущества NB-IoT
Недостатки NB-IoT
Развитие NB-IoT в мире и РФ
Интересно, что некоторые страны/регионы отдают предпочтение первоочередному развитию NB-IoT (Европа, Китай, Россия), другие – LTE-M (США, Канада). Но в целом есть мнение, что в недалёком будущем оба стандарта будут развернуты глобально.
Вот карта и коммерческие запуски сетей CIoT по данным GSMA:
Россия на карте GSMA почему-то пока остаётся в серой зоне. Или ждут подтверждений коммерческих запусков?
Когда писалась эта статья, пришла информация, что МТС уже запустил свою сеть NB-IoT в коммерческую эксплуатацию!
Скорости передачи данных в NB-IoT
Если в спецификациях 3GPP Release 13 был определен только один вариант NB-IoT – Category NB1, то в спецификациях 3GPP Release 14 появилось 2 варианта: Category NB1 и NB2. Вариант Category NB2 является более скоростным. Для сравнения возможностей NB1 и NB2 в таблице 1 приведены максимальные размеры транспортных блоков на прием и передачу согласно спецификации 3GPP 36.306 Release 14:
Категория оборудования | Максимальный размер транспортного блока на прием (DL), бит | Максимальный размер транспортного блока на передачу (UL), бит |
Category NB1 | 680 | 1000 |
Category NB2 | 2536 | 2536 |
Qualcomm в спецификации чипа MDM9206 (используется в модуле N20) приводит следующие скорости передачи в режиме Cat. NB1: прием (DL) – 20 кбит/с, передача (UL) – 60 кбит/с:
https://www.qualcomm.com/products/mdm9206-iot-modem
Аналогичные результаты для NB1 приводят коллеги из МТС, упоминая, что для категории NB2 максимальная скорость приема/передачи составит более 100 кбит/с:
https://habr.com/company/ru_mts/blog/430496/
Но, насколько понимаю, речь идет о физической скорости в канале связи, соответственно, реальная скорость передачи данных будет намного меньше. К сожалению, на данный момент экспериментальными данными о максимальной скорости передачи в режиме NB-IoT я не располагаю.
Частотные диапазоны для NB-IoT в РФ
Согласно решению ГКРЧ от 28 декабря 2017 года (протокол №17-44), https://digital.gov.ru/ru/documents/5875/, для NB-IoT могут использоваться следующие полосы частот на территории РФ:
453–457,4 МГц,
463–467,4 МГц,
791–820 МГц,
832–862 МГц,
880–890 МГц,
890–915 МГц,
925–935 МГц,
935–960 МГц,
1710–1785 МГц,
1805–1880 МГц,
1920–1980 МГц,
2110–2170 МГц,
2500–2570 МГц,
2620–2690 МГц.
За небольшим исключением:
… исключение работы РЭС в режиме NB-IoT в полосах радиочастот 453–453,15 МГц и 463–463,15 МГц на территории г. Москвы и Московской области
Похоже, ГКРЧ просто разрешила разворачивать NB-IoT во всех частотных диапазонах, в которых когда-либо было разрешено разворачивание каких-либо сетей сотовой связи…
Но какие из них будут использоваться в первую очередь?
По данным, полученным из разных источников, на начало 2019 г. для NB-IoT (в тестовом режиме) в России используются следующие частотные диапазоны:
Эти данные полностью совпадают с европейскими частотными диапазонами, которые приводятся в NB-IoT Deployment Guide to Basic Feature set Requirements. Version 2.0 от 5 апреля 2018 г.
Таким образом, на начало 2019 г. актуальными диапазонами NB-IoT для РФ можно считать: B20, B8 и B3.
По мнению некоторых участников рынка, NB-IoT будет разворачиваться прежде всего в субгигагерцовых частотных диапазонах (B20, B8), чтобы обеспечить наилучшее покрытие.
Можно ли будет в NB-IoT отправлять/принимать TCP/UDP-пакеты так же, как в GSM, например?
Можно! По крайней мере мы пробовали отправлять и принимать TCP/UDP-пакеты при помощи модулей N21 и N20, и всё получилось.
Можно ли будет в NB-IoT отправлять и принимать SMS?
Согласно упоминавшемуся чуть выше документу ассоциации GSM, на апрель 2018 г. функция SMS не была включена в минимальный набор требований, рекомендованных GSMA для реализации в сетях NB-IoT. По результатам опроса, проведенного GSMA, только некоторые из операторов планируют реализовать SMS в режиме NB-IoT в будущем. Тем не менее, исследование этого вопроса продолжается.
Представители Мегафона и МТС подтвердили, что, вероятно, функция SMS в режиме NB-IoT станет доступна в их сетях в будущем.
Из чего состоит IoT
Интернет вещей (англ. Internet of Things, IoT) — концепция вычислительной сети физических предметов («вещей»), оснащённых встроенными технологиями для взаимодействия друг с другом или с внешней средой, рассматривающая организацию таких сетей как явление, способное перестроить экономические и общественные процессы, исключающее из части действий и операций необходимость участия человека.
В данной статье мне хотелось бы рассмотреть то, посредством каких именно “вещей” может быть реализована в нашем мире эта идея и то, какими способами они могут взаимодействовать друг с другом или со внешней средой.
Базовые элементы делятся на несколько типов: сенсоры, актуаторы и гейты.
Сенсоры
Пожалуй нет смысла объяснять смысл и назначение этого типа элементов. Оно ничем не отличается от стандартных: разнообразные термометры, микрофоны, камеры и десятки прочих, менее распространённых устройств. Некоторые из них можно увидеть на изображении Sensors Starter Kit для Arduino:
Актуаторы
Данный тип элементов предназначается для того, чтобы воздействовать на окружающую среду, или на определённый объект в ней. Эту роль могут выполнять самые разнообразные устройства: от сервоприводов и динамиков до замков (конечно, электронных) с осветительными приборами.
Гейты
Это устройства, на которые обычно возлагают логику поверхностного анализа информации, поступающей от подключенных к ним сенсоров. В определённых ситуациях, анализ данных может требовать малого количества вычислительных ресурсов, так что гейты вполне способны принимать некоторые решения самостоятельно. Принимая такие решения, они отправляют определённые команды управления на актуаторы, которые, в свою очередь, выполняют уже свои функции.
Если же обработка иформации требует больших затрат, или эта информация подлежит сбору, гейты отправляют её на сервера, где с ней и производится дальнейшая работа. Вполне себе вероятно использование в роли гейтов микрокомпьютеров (вверху) или микропроцессоров (внизу):
Для того, чтобы построить мониторинговую систему, достаточно будет использования лишь сенсоров и некоторого сервера, который будет выступать в роли гейта. Например, благодаря сенсору движения и условной “малине”, можно без особых усилий организовать учёт количества людей, проходящих через какую-нибудь проходную.
Добавив в ранее сконструированную модель актуатор в лице динамика, можно добиться того, чтобы проход каждого n-ного проходящего был подзвучен величественными фанфарами.
Так, усложнять конструкцию подобной ячейки можно довольно долго. Однако в определённый момент неизбежно появится необходимость в долгосрочном хранении собранной статистики, её анализе, визуализации и прочем. Здесь понадобятся уже полноценные сервера, которым можно будет делегировать данные обязанности. Такие сервера в совокупности образуют облака, к которым и подключаются гейты.
Транспорт
Теперь, когда уже более или менее ясно, какие устройства используются для создания инфраструктуры, можно посмотреть на то, какими средствами эти устройства друг с другом взаимодействуют. Как видно на первом изображении, есть 2 условные группы — облако и периферия.
Ячейки, состоящие из вышеперечисленных типов устройств, как можно заметить, находятся в периферии и для коммуникации используют специальные протоколы взаимодействия. Более всего распространены LoRa и ZigBee. Обе эти сети являются очень медленными в сравнении, например, с 4G или даже с 3G, однако имеют и свои преимущества.
Одним из главных является их энергоэффективность. Дело в том, что идея интернета вещей заключается в создании среды устройств, коммуницирующих между собой без участия человека. Стоит заметить, что в некоторых случаях полностью избежать вмешательства человека избежать не удастся. Например, в системе подсчёта количества прошедших человек есть сенсор движения. Ему, как и любому другому электрическому устройству, необходимо питание. Проводить провода с питанием к каждому такому сенсору (если их больше 5 и они сильно разбросаны в пространстве) кажется не лучшей идеей. Соответственно, работать они будут от батареек или аккумуляторов. Если потребление заряда будет чрезмерным, элементы питания им нужно будет менять довольно часто. А это приведёт к тому, от чего стремится уйти интернет вещей — нужно же будет кому-то заменять эти батарейки. А вот если сенсоры будут энергоэффективны, то достаточно будет просто вставить батарейку и забыть об этом на год, два, пять и т. д.
Ещё одним преимуществом этих сетей является высокая помехоустойчивость. Каждый бит информации в этих сетях отправляется отдельным радиосигналом, поэтому его довольно просто выделить на фоне эфирного шума.
Небольшое сравнение LoRa и ZigBee
500 м (зависит от мощности передатчика)
А вот между периферией и облаком, а так же и внутри облака, используются, обычно, знакомые и привычные всем wi-fi с ethernet, сотовые и спутниковые сети и т. д.
Сравнение разных видов сетей на основе скорости и дальности
Заключение
Теперь, рассмотрев устройство сетей интернета вещей, можно точно сказать, что в плане аппаратной части нет ничего загадочного и сложного. Сделать простенькую IoT-сеть может любой желающий, способный купить довольно дешёвые на сегодняшний день компоненты и написать код из пары строк. Однако для того, чтобы разработать и притворить в жизнь серьёзные проекты как, например, реализацию концепции умного дома или даже умного города, нужно приложить огромное количество усилий. Ведь для того, чтобы все эти устройства работали между собой нужна платформа, способная контролировать все протекающие процессы.
Так же не стоит забывать, что в облаках интернета вещей могут использоваться и другие технологии, помогающие раскрыть его потенциал в большей степени. Такими могут выступать и BigData, и BlockChain, и нейросети с машинным обучением. А ведь каждая из последних перечисленных технологий являет собой отдельную обширную область компьютерных (и не очень) наук.
NB-IoT: как он работает? Часть 1
Устройства в стандарте NB-IoT могут работать до 10 лет от одной обычной батарейки. За счет чего? Мы собрали все самое главное об этой технологии. В этой статье расскажем о ее особенностях с точки зрения архитектуры сети радиодоступа, а во второй части — об изменениях в ядре сети, которые происходят при NB-IoT.
Технология NB-IoT многое унаследовала от LTE — начиная с физической структуры радиосигнала и заканчивая архитектурой. Все невозможно перечислить в одной статье, поэтому попробуем сфокусироваться на основных особенностях, ради которых и создавалась эта технология. Итак:
В чем отличия NB-IoT с точки зрения архитектуры сети радиодоступа?
Сначала вспомним важное об LTE:
Для LTE сигнала используется принцип разделения каналов OFDM с разнесением поднесущих на 15кГц. В DL (Downlink, направление от БС) используется OFDMA, а в UL (Uplink, направление на БС) используется SC-FDMA. Вся несущая в LTE разделена на ресурсные блоки (Resource block, RB), каждый из которых состоит из 12 поднесущих и общей шириной занимаемой полосы в 12х15кГц = 180кГц (рис.1). Каждый ресурсный блок разделен на 12х7=84 ресурсных элемента (Resource element, RE).
Рис.1. Resource block, Resource element
Для достижения большой пропускной способности соты применяются высокие порядки модуляции QAM256 для DL и QAM64 в UL. Вдобавок с этой же целью применятся технологии MIMO2x2 и MIMO4x4.
Особенности радиосигнала NB-IoT:
Самое важное в NB-IoT — возможность работы при более низких уровнях сигнала и при высоком уровне шумов, а также экономия батареи. Также NB-IoT предназначен для передачи коротких сообщений, и от него не требуется передача аудио-видео контента, больших файлов и прочего.
Исходя из этого, на физическом уровне есть определенные особенности, которые помогают обеспечить необходимых характеристик:
Использование узкой полосы частот в один RB, одной антенны и полудуплексного режима передачи позволяет упростить устройство и достичь:
Для NB-IoT могут использоваться практически все те же диапазоны частот, что и для 2G/3G/4G в «низких» band. Это B20 (800МГц), B8(900МГц), B3(1800МГц). Более «высокие» частоты смысла использовать нет из-за большего затухания сигнала.
Есть три способа выделения частотного ресурса для NB-IoT:
Выделенный частотный канал шириной в 200кГц. Этот вариант наиболее эффективный для работы NB-IoT, но и наиболее затратный. Дело в том, что в этом случае может понадобиться от 300 до 600 кГц очень ценного спектра вместе с защитными интервалами. В этом случае взаимные интерференции с другими технологиями минимальны (Рис.2).
Рис. 2. Варианты размещения NB-IoT в режиме stand-alone.
В этом случае для NB-IoT выделяются ресурсы внутри существующей LTE несущей, но NB-IoT несущая имеет повышенную мощность на 6дБ по сравнению с ресурсными блоками LTE. Этот вариант хорошо подходит для экономии частотного ресурса, но при этом есть проблема взаимного влияния с LTE-сетью (Рис.3).
Рис. 3. Размещение NB-IoT в режиме in-band.
В этом случае NB-IoT запускается в так называемом защитном интервале. Например, в полосе LTE10МГц, по 500 кГц свободного спектра, используемого в качестве защитного интервала. Так же как и в режиме in-band для большей дальности NB-IoT-несущая имеет повышенную мощность на 6-9дБ по сравнению с ресурсными блоками LTE (Рис.4). Этот вариант использования позволяет одновременно сэкономить частотный ресурс и уменьшить взаимное влияние с LTE сетью, хотя в этом случае ухудшаются параметры внеполосных излучений для LTE.
Рис. 4. Размещение NB-IoT в режиме guard-band.
Возможность передавать в направлении UL на одной поднесущей:
Если в LTE абоненту выделяются блоки ресурсных групп, состоящие из одного или нескольких RB, то в NB-IoT минимальной единицей является RE — ими нарезаются порции радиоресурса абоненту. Поэтому появилась возможность устройству передавать сигнал в UL на одной поднесущей в 15кГц. При этом сейчас для NB-IoT уже стандартизовано разделение RB на 48 поднесущих по 3.75кГц в направлении UL. Длительность ресурсных элементов при этом увеличивается в четыре раза, а соответственно и таймслота до 2 мс, поэтому информационная емкость их не меняется (Рис. 5).
Передача сигнала в узкой полосе на одной поднесущей 15кГц, а тем более в 3.75кГц, позволяет значительно увеличить спектральную плотность сигнала, а соответственно отношение сигнал/шум, что очень важно для абонентских устройств, имеющих гораздо менее мощные передатчики, чем у базовой станции. Тем более, что в NB-IoT, так же, как и в LTE, мощность абонентских устройств ограничена в 23дБм (200мВт).
В то же время, если радиоусловия позволяют, для уменьшения времени активного режима передачи, а соответственно экономии батареи, возможна передача на нескольких поднесущих одновременно. Передача на одной поднесущей имеет название режима передачи single-tone, а на нескольких — multi-tone (это 3, 6 или 12 поднесущих по 15 кГц). На рис.6 показано формирование из ресурсных элементов различных вариаций ресурсного юнита (Resource unit, RU).
Рис.6. Resource units (RU).
RU — это очередной более крупный кирпичик, из которого образуются транспортные блоки (Transport block, TB), назначаемые пользователю. В одном TB может быть от одного до десяти RU. При это в зависимости от качества сигнала каждый TB может содержать разное количество полезной информации в зависимости от применяемой модуляционно-кодирующей схемы (Modulation coding scheme, MCS). Размер TB в NB-IoT, конечно же, гораздо меньше, чем в LTE и составляет 680бит в DL и 1000бит в UL (Rel.13 3GPP). А также в этом стандарте всего один процесс HARQ (Hybrid Automatic Repeat Request), поэтому следующий TB может быть передан только после подтверждения приема предыдущего TB. В релизе 14 3GPP размеры транспортных блоков увеличены до 2536 бит и Dual-HARQ, что позволяет передавать два транспортных блока подряд.
Еще одна особенность NB-IoT — функционал coverage enhancement, который достигается последовательными переповторами передаваемого сигнала. Этот механизм не следует путать с повторной передачей пакета при неуспешном приеме, в случае coverage enhancement решение об успешности принятого сигнала происходит после приема всех повторенных сообщений (Рис.7). Повторятся могут все физические каналы NPDCCH, NPDSCH, NPRACH и NPUSCH (здесь N приставка Narrowband).
Рис. 7. Переповторы в NB-IoT
Стандартом определены три ступени, называемые coverage level 0, 1 и 2. Количество повторов может варьироваться в широких пределах и задается индивидуально для каждого типа физического канала и его формата. Например, стандартом специфицированы значения для полезного сигнала в UL до 128 и в DL до 2048. В реальности, конечно, все будет зависеть от настроек сети оптимизированных под режим работы (stand-alone, in-band/guard-band), качества сигнала и других условий. Переповторы позволяют декодировать сигнал при гораздо более низком уровне отношения сигнал/шум теоретически вплоть до 10дБ и ниже.
Все вышеописанное — использование более узкой полосы и функции coverage enhancement — позволяет в итоге достичь пресловутого выигрыша в 20дБ по отношению к GSM.
Скорости передачи в NB-IoT
Вообще сам принцип IoT, как уже было сказано выше, не предполагает значительного обмена информации с устройствами, а соответственно, значения эти весьма условны. Во-первых, они достигаются только при хорошем качестве сигнала. Во-вторых, сигнальный обмен, включающий назначение кагала DCI и подтверждение приема ACK, не адаптирован, как в LTE, для получения максимальных скоростей. В-третьих, если устройство передает всего одно-два коротких сообщения, то в этом случае не совсем однозначно, что понимать под скоростью передачи. Но не сказать о скоростях здесь нельзя. Для примера на рис.8 приведена расчетная скорость в DL для пользователя.
Рис.8. Скорость передачи в DL.
Из рисунка видно, что в NB-IoT, в отличии от LTE, пользовательское устройство не может занять весь доступный радио-ресурс. И оставшуюся часть радио-ресурса БС может использовать для связи с другими устройствами. Аналогичная ситуация в UL (рис. 9).
Рис.9. Скорость передачи в UL.
Так, использование Dual-HARQ и увеличенный размер самих транспортных блоков до 2536 бит (релиз 14 3GPP), позволяют увеличить скорость передачи в DL и в UL выше 100кбит/с.
Это все — если говорить об основных особенностях с точки зрения архитектуры радиодоступа, не уходя далеко в сторону. Надеемся, было полезно. Уже скоро — в следующем посте — расскажем, как поменялось ядро сети (Core Network) при NB-IoT. Будем признательны за обратную связь.
Автор:
Эксперт отдела архитектуры сети радиодоступа МТС Ильнур Фаузиев ilnurf