микрофлора вдп что это нормальная
Микрофлора полости рта
Последнее обновление: 11.11.2021
От состояния микрофлоры полости рта зависит не только здоровье зубов и десен, но и работа органов пищеварения, иммунной и других систем и органов. Давайте разберемся, что представляет собой эта часть организма, что влияет на состояния полости рта и как быстро восстановить нормальную работу микрофлоры.
Что представляет собой микрофлора полости рта?
Удивительно, но во рту здорового человека живет примерно 160 видов микроорганизмов. Вам, наверное, приходилось слышать о том, что «рот — это самое грязное место в организме». Отчасти это утверждение верно: ротовая полость — один из наиболее заселенных отделов тела человека.
Микроорганизмы попадают в ротовую полость с пищей и водой, а также из воздуха. Именно во рту наблюдаются самые благоприятные условия для развития бактерий. В этой части тела всегда стоит равномерная влажность и температура (примерно 37 °С). Обилие питательных веществ, достаточное содержание кислорода, наличие складок в полости рта, межзубных промежутков и десневых карманов, слабощелочная pH провоцируют размножение различных бактерий.
Микроорганизмы неравномерно распределяются в полости рта. Максимальное их количество наблюдается на поверхности зубов и на спинке языка. В одном грамме зубного налета содержится примерно 300 миллиардов микробов, а в слюне — примерно 900 миллионов на 1 миллилитр.
Можно очень долго перечислять все виды бактерий, заселяющих микрофлору полости рта. Важно понимать, что каждый человек уникален, и для оценки «нормальности» микрофлоры нужно знать особенности конкретного организма.
Например, в одном случае большое количество лактобактерий в полости рта будет сохранять зубы, а в другом — образование большого количества молочной кислоты в процессе их жизнедеятельности задержит рост других важнейших микроорганизмов. Снижается число стафилококков, дизентерийных и брюшнотифозных палочек, активизируются кариозные процессы, и микрофлору полости рта придется восстанавливать.
Нарушение микрофлоры полости рта: причины
Дисбактериоз ротовой полости могут спровоцировать самые разные заболевания и проблемы. Нарушение условно-патогенной микрофлоры полости рта чаще всего вызывают такие проблемы, как:
Стадии дисбактериоза
В зависимости от степени развития заболевания стоматологи различают четыре стадии дисбактериоза:
Для запущенных форм дисбактериоза характерны такие симптомы, как:
Методы восстановления микрофлоры полости рта
Лечение дисбактериоза зависит, в первую очередь от характера возбудителя, который определяется на основании экспертизы в стоматологии.
К сожалению, зачастую постановка диагноза при дисбактериозе бывает затрудненной, так как на начальном этапе болезнь никак не проявляет себя. При малейших подозрениях на заболевание стоматолог направляет пациента на мазок с поверхности слизистых, анализы крови и мочи.
В зависимости от диагностированной причины дисбактериоза стоматолог может назначить следующие методы лечения заболевания:
В редких случаях назначаются противогрибковые средства и антибиотики.
Как правило, длительность лечения дисбактериоза составляет 2-4 недели и зависит от состояния здоровья пациента, количества очагов воспаления и имеющихся осложнений заболевания.
Надежным помощником в борьбе с дисбактериозом станет пробиотический комплекс АСЕПТА PARODONTAL*, источник лактобактерий для восстановления микрофлоры полости рта. Этот уникальный комплекс с запатентованными штаммами лактобактерий и витамином D обладает способностью эффективно восстанавливать микрофлору полости рта. Комплекс нормализует бактериальную флору в ротовой полости, устраняет неприятный запах изо рта и препятствует образованию биопленок патогенных микроорганизмов.
Для улучшения эффективности назначенной терапии стоматологи рекомендуют отказаться от вредных привычек (хотя бы на время лечения), пересмотреть рацион, уделив внимание растительной пищи и обязательно ухаживать за полостью рта после каждого приема пищи.
Возможные осложнения дисбактериоза
Каждому пациенту важно внимательно следить за состоянием микрофлоры полости рта. Отсутствие лечения дисбактериоза может привести к таким неприятным заболеваниям, как:
Кроме того, научно доказана тесная взаимосвязь состояния микрофлоры полости рта с состоянием сердечнососудистой системы. В 2008 году в США была доказано, что заболевания периодонта как источник хронического воспаления являются независимым фактором риска возникновения ишемической болезни сердца (ИБС).
Итак, теперь вам известна роль нормальной микрофлоры полости рта в организме человека. Относитесь к себе внимательно, и ваш здоровый организм будет радовать вас каждый день.
Клинические исследования
Проведенные в 10-ом отделении Cтоматологии и челюстно-лицевой хирургии Стоматологического факультета Международного университета Каталонии, доказали, что применение лактобактерий помогает снизить болевые ощущения и трудности с приемом пищи после удаления зубов у взрослых пациентов.
Эффективность применения комплексной терапии в лечении заболеваний пародонта. (кафедра пародонтологии СФ ГБОУ ВПО МГМСУИМ.А.И.Евдокимова. Москва.)
Немерюк Д.А.- доцент, к.м.н., Дикинова Б.С.- аспирант кафедры пародонтологии СФ Царгасова М.О.- аспирант кафедры пародонтологии СФ Яшкова В.В.- аспирант кафедры пародонтологии СФ
кафедра пародонтологии СФ ГБОУ ВПО МГМСУИМ.А.И.Евдокимова. Москва
Дизбактериоз ЛОР-органов: проблема или выдумка?
Слизистая оболочка верхних дыхательных путей представляет собой первую линию защиты организма против разнообразных патогенных факторов окружающей среды, таких как бактериальные, грибковые, вирусные, промышленные химические раздражители и загрязнения и обеспечивает противовирусный иммунитет. Повреждение слизистой или сухость облегчают проникновение вируса в организм. После того, как враг попал в организм и начал повреждать клетки, огромное значение играет выработка интерферонов, которые обеспечивают их невосприимчивость к действию вируса.
Противовирусный иммунитет – это очень сложный процесс, в котором участвует множество ресурсов иммунной системы. К сожалению, иммунные реакции не всегда срабатывают так, как об этом пишут в учебниках по биологии. Часто какой-либо процесс может быть нарушен, что приводит к осложнениям и проблемам. Когда снижен иммунный ответ, нужны средства, поднимающие иммунитет. Они могут быть природными, либо купленными в аптеке, главное – это эффективность и безопасность.
Слизистая оболочка верхних дыхательных путей большей частью покрыта тонким специализированным эпителием, создающим восприимчивый (чувствительный) барьер, который постоянно бомбардируется экзогенным живым или мертвым антигенным материалом.
А теперь непосредственно о микрофлоре верхних дыхательных путей и полости рта. Важно понимать, что ЛОР-органы не являются исключением в отношении микробной стерильности, т. е. в норме мы можем выявлять определенные микроорганизмы в носу, глотке и наружном ухе. Эти микробы в условиях сохранения иммунной резистентности не только не приносят нам никакого вреда, но и наоборот, оказывают положительное влияние. Они образуют так называемую биопленку (толщиной от 0,1 до 0,5 мм) – полисахаридный каркас которой, состоящий из микробных полисахаридов и муцина, предотвращает заселение организма патогенными микроорганизмами. Благодаря выделению микроорганизмами биопленки различных кислот, спирта, лизоцима (антибактериальное вещество) и стимуляции образования иммуноглобулина А тормозится развитие патогенных микробов. Кроме того, нормальные микроорганизмы препятствуют выделению токсинов патогенными бактериями.
Иллюстрацией работы «полезных» микроорганизмов является, например, следующий факт: с каждым вдохом мы в среднем вдыхаем около 1400-1700 микробов, а благодаря, в частности, биологическим факторам неспецифической защиты в глотке их количество сокращается до 300, в гортани и нижележащих отделах эти микроорганизмы не обнаруживаются вообще.
Это лишний раз подтверждает важность сбалансированной микрофлоры для полноценной жизнедеятельности всего организма.
Нормальная микрофлора глотки разнообразна, поскольку здесь смешивается микрофлора полости рта и воздухоносных путей. Представителями резидентной микрофлоры считаются: нейссерии, дифтероиды, и гемолитические стрептококки, энтерококки, микоплазмы, коагулазоотрицательные стафилококки, моракселлы, бактероиды, боррелии, трепонемы, актиномицеты. В верхних дыхательных путях преобладают стрептококки и нейссерии, помимо этого встречаются стафилококки, дифтероиды, гемофильные бактерии, пневмококки, микоплазмы, бактероиды. Слизистая оболочка гортани, трахеи, бронхов в норме стерильна. Следует сказать, что вышеуказанный видовой спектр микроорганизмов не является неизменным. Его состав зависит от многих факторов: сопутствующей патологии, возраста, условий внешней среды, условий труда, питания, перенесенных заболеваний, травм и стрессовых ситуаций и т.д.
Такие состояния, как острые и хронические заболевания всего организма, а особенно уха, горла, носа и полости рта, аллергия, неблагоприятные физические факторы (переохлаждение, инсоляция и т. д.), химические агенты, физическое, интеллектуальное и психоэмоциональное перенапряжение, прием антибактериальных, гормональных и цитостатических препаратов, недостаточное питание, гиповитаминоз, профессиональные вредности, курение, алкоголь провоцируют нарушение нормального микробиологического равновесия в ЛОР-органах и являются причинами нарушения качественного и количественного состава микрофлоры ротоглотки. Существует бактериологическое понятие, которое характеризует изменение соотношения представителей нормальной микрофлоры, снижение числа или исчезновение некоторых видов микроорганизмов за счет увеличения количества других и появления микробов – это дисбактериоз.
Терапия дисбактериоза должна быть строго индивидуальной и направленной в первую очередь на ликвидацию источника проблемы. Например, пока не будет адекватно пролечен аденоидит (консервативно или оперативно), от дисбактериоза вряд ли возможно избавиться. Вопрос о необходимости приема антибиотика определяется исключительно течением основного заболевания: если дисбактериоз глотки вызван наличием у ребенка хронического панкреатита, то антибактериальные средства тут неуместны; если же дисбактериоз связан с запущенной формой хронического синусита или аденоидита – без этой группы лекарственных препаратов, скорее всего, не обойтись. Воспалительные очаги в носо- и ротоглотке должны быть обязательно устранены – кариозные зубы пролечены, аденоидные вегетации, небные миндалины санированы и т.д. Помните, что они могут не только вызывать местные воспалительно-инфекционные процессы и дисбактериоз ротоглотки, но и являться источником аутоинфекции и аутоинтоксикации всего организма. Убедительные данные свидетельствуют, что возникновение ряда заболеваний респираторной, желудочно-кишечной, сердечно-сосудистой систем, опорно-двигательного аппарата обусловлено очаговой инфекцией в ротоглотке. Поэтому санация полости рта и ЛОР-органов – это обязательное условие и первый шаг к выздоровлению при многих патологических процессах.
Не стоит также забывать о мерах профилактики развития инфекционно-воспалительных процессов ротоглотки и ЛОР-органов. Так, стандартными мерами профилактики являются: ежедневные гигиенические мероприятия (туалет носа), регулярное посещение врача, рациональное питание, закаливание, создание оптимального микроклимата (влажность, температура), лечение сопутствующей патологии.
Кроме вышеперечисленных мер профилактики, помочь решить проблему инфекционно-воспалительных заболеваний ЛОР-органов и помочь восстановить нормальный микробиоценоз слизистой оболочки может прием средств растительного происхождения на основе прополиса.
Прополис – это смесь природных смол, вырабатываемых пчёлами из соединений, собираемых с разных частей растений, бутонов и выделений. Современные противомикробные применения прополиса включают рецептуры для лечения синдрома простуды (инфекции верхних дыхательных путей, обычная простуда и гриппоподобные инфекции), для заживления ран, лечения ожогов, акне, простого и генитального герпеса, и нейродермита.
В настоящее время, прополис является природным лечебным средством, он применяется и в косметике и является популярным альтернативным лекарственным средством для самолечения различных заболеваний. Современное применение прополиса предполагает его использование для лечения синдрома простуды (инфекции верхних дыхательных путей, обычная простуда и гриппоподобные инфекции), а также в качестве дерматологических препаратов, полезных для заживления ран, лечения ожогов, акне, простого и генитального герпеса, и нейродермита. Прополис также применяют для полоскания рта для предупреждения кариеса и для лечения гингивита и стоматита. На рынке он представлен в комбинации с экстрактом тимьяна, меда и витамина С в форме спрея для полости рта и горла Санорин Лорис, который не содержит спирта и является водно-глицериновым раствором. Благодаря комбинации натуральных компонентов и их свойствам, спрей Санорин Лорис эффективен для гигиены полости рта и для профилактики раздражения, увлажнения и защиты слизистой горла, а также как дополнение к комплексному лечению и профилактике ОРЗ. Важно отметить, что это удобный спрей для использования в любой ситуации, достаточно встряхнуть флакон и направить распылитель на проблемный участок.
Роль микробиома дыхательных путей в респираторном здоровье
В предлагаемом обзоре обобщены последние достижения в области изучения респираторной микробиоты, взаимосвязи микробиома верхних дыхательных путей и легкого, обсуждения возможных механизмов влияния микробиома на астму и аллергию. Идентификация не только па
The proposed review summarizes recent advances in the study of respiratory microbiota, the relationship between the upper respiratory tract microbiome and the lung, and a discussion of the possible mechanisms of influence of the microbiome on asthma and allergies. Identifying not only pathogenic bacteria, but also commensals in the respiratory tract and gastrointestinal tract (Gut- Lung axis) is an innovative approach to finding out their role in the development of inflammation and modulation of the immune response in respiratory allergies.
История открытия микромира, начавшаяся с изобретения микроскопа голландским натуралистом Антони ван Левенгуком в 1674 г., тесно переплетается с историей макромира, где центральной фигурой является человек и проблемы его здоровья. Эти непростые взаимосвязи рассматривались первоначально как антагонистические в результате доминирования микробной теории развития болезни. Начиная практически с античных времен предполагалось, что болезни человека вызываются «микроскопическими животными», а в последующем эта идея получила развитие, научное обоснование и конкретное подтверждение в концепции микробной теории развития болезней, научный фундамент которой заложили Луи Пастер, Роберт Кох и др. Укоренившийся стереотип необходимости борьбы с микроорганизмами как источником инфекционных заболеваний со времен основоположников микробной теории в последнее время уступил место новому взгляду на проблему взаимоотношения «человек–микроб».
Микробы, появившиеся около 3,5 млрд лет назад, являются самой древней группой организмов из ныне существующих на Земле. Повсеместная распространенность и суммарная мощность метаболического потенциала микроорганизмов определяют их важнейшую роль в круговороте веществ, поддержании динамического равновесия в биосфере Земли. Человек и микробы существуют друг с другом нераздельно, в организме человека обнаруживаются тысячи видов бактерий, архей, грибов и вирусов. Учитывая их огромное влияние на жизнедеятельность макроорганизма, современная наука рассматривает человека уже как суперорганизм, состоящий не только из соматических клеток, но и из огромного количества микроорганизмов. Тысячелетия взаимодействия микрофлоры и организма человека научили человека с помощью иммунной системы не только эффективно защищаться от патогенов, но и предотвращать аутоиммунные и аллергические заболевания — т. е. развили способность к иммунной регуляции или модуляции. Новые взгляды на взаимодействие иммунной системы с нормальной микробиотой как на самостоятельное явление, устанавливающее взаимоотношения с симбионтными микроорганизмами, являются современным подходом к пониманию живых систем, уточнению разнообразных типов многомерных взаимодействий и более полному пониманию сложных фенотипов аллергических и других иммунозависимых заболеваний. Растущая доступность высокопроизводительных технологий позволила провести общесистемное профилирование генома, транскриптома, эпигенома, микробиома и метаболома, изменила наши представления, обеспечивая фундамент для исследования астмы и аллергии на принципиально ином уровне, исходя из новой парадигмы сложного взаимодействия между микробиомом и его хозяином, которые могут провоцировать или препятствовать формированию респираторного заболевания.
Терминология
Термины «микрофлора», «микробиота» и «микробиом» часто используются в литературе как синонимы. Однако существуют некоторые различия между ними. И хотя вопрос об их значении еще обсуждается, следует разграничивать понятия [1].
В связи с имеющимися в публикациях разночтениями по использованию некоторых терминов в контексте данной статьи предлагаются следующие уточнения.
Нормофлора (нормальная микрофлора) — определенное качественное и количественное соотношение разнообразных популяций микробов отдельных органов и систем желудочно-кишечного тракта и других слизистых тканей, поддерживающее биохимическое, метаболическое и иммунологическое равновесие макроорганизма, необходимое для сохранения его нормального состояния.
Микробиом — все гены, находящиеся внутри данной микрофлоры (микробиоты), это совокупность геномов микроорганизмов, занимающих одну экологическую нишу, например, обитателей кожи человека или его кишечника.
Метагеном — весь генетический материал, получаемый из образца, например, содержимого кишечника. Метагеном — это набор генов всех микроорганизмов, находящихся в образце среды.
«Омиксные технологии» (название связано с одинаковым окончанием слов, входящих в сферу эффективных экспериментальных дисциплин — геномика, протеомика, транскриптомика, метаболомика) возникли в результате стремительного развития технологий, позволяющих производить и анализировать большие объемы биологических данных. Современный «омиксный» инструментарий включает высокопроизводительные методы секвенирования ДНК (геномика), определения концентрации и активности белка (протеомика), метаболитов (метаболомика), регуляции экспрессии генов (эпигеномика), а также фармацевтические инструменты для поиска и тестирования новых лекарственных препаратов (фармакоэкономика).
Экспосом — различные воздействия, которые могут повлиять на развитие аллергического заболевания. Эти экспозиции включает в себя следующие три вида воздействий: 1) общая среда, включая городскую или сельскую местность, климат, загрязнение воздуха, образование; 2) конкретная внешняя среда, включая диету, физическую активность, воздействие табака, инфекции, род занятий; 3) внутреннее тело, окружающая среда. Эти факторы одновременно в совокупности с иными взаимодействуют друг с другом и влияют на формирование аллергических заболеваний и респираторной патологии. Экспозиционно-ориентированные проекты (Exposome-focused projects) необходимы для изучения сложного взаимодействия генетики, окружающей среды и микробиома [2].
Научные проекты по изучению микробиома человека
Каждый человек (даже однояйцевые близнецы) имеет уникальную микробную ассоциацию, которая может быть подвержена ежедневным вариациям. Для идентификации и характеристики совокупности микроорганизмов человека был инициирован проект «Микробиом человека» (Human Microbiome Project — HMP). Проект «Микробиом человека» является логическим развитием проекта «Геном человека» (The Human Genome Project, HGP), целью которого была полная расшифровка человеческого генома. При реализации HGP были разработаны и усовершенствованы методы изучения генов человека, которые и легли в основу следующего за ним HMP. К революционизирующим технологиям при изучении геномов можно отнести разработку в 1985 г. полимеразной цепной реакции (ПЦР) — наиболее чувствительного до сих пор метода детектирования ДНК [3].
Официально научная программа «Геном человека» с участием ведущих молекулярно-генетических лабораторий США, Западной Европы, России и Японии оформилась и стартовала в 1990 г., а первый полный геном человека был описан и опубликован в 2003-м, этот проект до сих пор окончательно не завершен, так как нерасшифрованными остаются некоторые участки человеческой ДНК [4].
Начало выполнения проекта «Микробиом человека» — 2008 г., когда Национальные институты здравоохранения США (National Institutes of Health, NIH) поставили цель — описать бактериальную жизнь, связанную с организмом человека, используя технологии проекта «Геном человека».
За сравнительно короткое время (2007–2014 гг.) ученые смогли составить новое представление о многообразии микрофлоры тела человека [5, 6]. Около 200 ученых почти из 80 научно-исследовательских институтов США работали в течение пяти лет над этой первой в истории «переписью» микроорганизмов, которые проживают на всех биотопах (местах обитания) человека. Они расшифровывали ДНК микробов, используя некоторые из тех методов, которые применяются в человеческой генетике. Каталогизация необходимых и достаточных наборов микробиотов, которые поддерживают здоровье, и нормальные диапазоны этих особенностей у здоровых популяций являются важным первым шагом к выявлению и исправлению микробных конфигураций, которые участвуют в болезни [7, 8].
В 2014 г. с целью генерирования ресурсов для характеристики микробиома и выяснения роли микробов в состоянии здоровья и болезненных состояниях стартовала вторая фаза этого крупного международного многопрофильного проекта — Integrative Human Microbiome Project (iHMP) (в настоящее время опубликованы ключевые результаты) [9, 10]. Миссия проекта заключалась в создании интегрированных продольных наборов данных биологических свойств как из микробиома, так и из организма-хозяина с использованием различных «омикс»-технологий.
«Омиксные методы» революционизировали методологию экспериментальной биологии, анализа данных и их интеграции. Усилился акцент на функцию, структуру, эволюцию геномов. Сегодня появилась возможность анализировать первичные структуры геномов, экспрессию генов в них, выявлять различные уровни регуляции и взаимосвязи между ними. Инструментально произошел переход от микрочипов к так называемому высокопроизводительному полногеномному секвенированию, исследуется весь набор ДНК, содержащийся в отдельной клетке, клеточных популяциях или сообществах организмов, и анализируется работа всех генов одновременно. Новые экспериментальные технологии порождают огромные объемы данных (Big Date), анализировать которые можно только методами биоинформатики, в основе которой лежит синтез биологических и математических знаний.
Долгое время при секвенировании геномов микроорганизмов в качестве источников ДНК использовались, как правило, культуры одинаковых клеток. Однако ранние исследования показали, что во многих средах обитания присутствуют большие группы микроорганизмов, которые нельзя вырастить в лабораторной культуре и, следовательно, секвенировать их геномы. Необходимость разработки соответствующих новых (некультуральных) методов исследований микрофлоры [11], в свою очередь, ускорила развитие такого направления в изучении микробов и здоровья человека, как «метагеномика» [12]. Метагеномный анализ позволяет определить видовое разнообразие исследуемого образца без необходимости выделения и культивирования микроорганизмов. Секвенирование и анализ генов из целых сообществ, а не из отдельных геномов показали, что микробы функционируют внутри сообществ, а не как отдельные виды. Этот сдвиг от акцента на отдельных организмах к микробным взаимодействиям был полноценно охарактеризован в докладе Национальной академии наук США (National Academy of Sciences, NAS) в 2007 г., в котором изложены проблемы и перспективы метагеномики как способа понимания основополагающей роли микробных сообществ в целом в окружающей среде, так и в окружающей среде и здоровье человека [13]. Сфера метагеномики огромна. Определение метагеномных характеристик микробных сообществ было представлено в таких проектах, как «Исследование состава биоты желудочно-кишечного тракта человека» (Metagenomics of the Human Intestinal Tract Consortium, MetaHIT) — MetaHIT initiatives, The International Human Microbiome Consortium [14]. В РФ «Метагеномный анализ биоценоза желудочно-кишечного тракта» выполняется в рамках консорциума «Русский метагеном» [15], в том числе уточняется роль сообщества микроорганизмов дыхательных путей при респираторной патологии [16, 17].
Методы исследований и эволюция представлений о микробиоте и микробиоме
На протяжении многих лет, со времен Пастера и Коха, для изучения микробного разнообразия, селективного выделения представителей основных функциональных групп, в том числе патогенных микроорганизмов, использовались бактериоскопические и бактериологические (культуральные) методы. Используемые с конца XIX в. культуральные анализы (посевы) выявляли не более 1% микрофлоры. Особые проблемы возникали при культивировании анаэробов. В 1985–1993 гг. пришедшие на смену классическим микробиологическим подходам физико-химические методы анализа и молекулярно-генетические методы (ПЦР) позволили определить, что в кишечнике, например, обитает около 1000 видов микроорганизмов, 99% из которых анаэробные. При проведении ПЦР в реальном времени одновременно происходят амплификация, детекция и количественное определение специфической последовательности ДНК в образце, автоматическая регистрация и интерпретация полученных результатов [18].
Особой вехой в науке и медицине стали работы по секвенированию генома. Новые открытия позволили осознать, что человек — не только продукт своих собственных генов. Для полного понимания генетического материала нужно секвенировать геномы бактерий человека — из кишечника, с кожи, из носового канала, ротовой полости, дыхательных и мочеполовых путей. К началу XXI в. для исследования микробной популяции кишечника применили метод секвенирования генов 16S рРНК. Ген, кодирующий 16S рибосомальную РНК, стал идеальным маркером для идентификации микроорганизмов. Этот ген есть в геноме всех бактерий и архей, но отсутствует у эукариот и вирусов, имеет как консервативные участки, одинаковые у всех прокариот, так и видоспецифичные. Нуклеотидные последовательности 16S РНК всех известных бактерий общедоступны (генный банк). Секвенирование ДНК (определение нуклеотидной последовательности генов 16S РНК) позволило установить, что в кишечнике живет более тысячи видов микроорганизмов, но только 10% микрофлоры поддается культивированию [19].
С помощью глобального проекта «Микробиом человека» на сегодняшний день расшифровано около 3 млн генов микроорганизмов, что примерно в 150 раз превышает набор генов человека. В силу этого человек приобрел статус «суперорганизма», в котором сосуществует большое количество различных организмов [8, 20].
На рис. 1 показано соотношение генов организма (22 000) и микробиома (8 000 000), от которого зависит степень их возможного влияния на различные функции.
По своей сути этот рисунок иллюстрирует ставший популярным слоган «Вы — это Ваши бактерии» и слова научных популяризаторов: «Мы живем в мире микробов: они его заселили, преобразовали, сделали пригодным для нашей жизни и… превратили нас в среду своего обитания. Можно сколько угодно говорить о взаимоотношениях «хозяин — его микроб», но только кто тут хозяин, вот вопрос» [21].
В любом случае не следует рассматривать микроорганизмы, обитающие в различных локусах организма хозяина, как пассивные участники системы. С функциональной точки зрения их можно оценивать как еще один орган человека. По различным оценкам масса этого органа может достигать нескольких килограммов, а генетическое разнообразие в сотни раз больше генома человека. Изучение функции этого органа в норме и патологии — актуальная задача медицины настоящего и будущего.
Микробиом верхних дыхательных путей и его роль в респираторном здоровье
Наиболее полный анализ микробиоты человека в ходе реализации проекта HMP [5] при рассмотрении 27 отдельных участков тела выявил наличие 22 бактериальных фил, причем большинство последовательностей (92,3%) были связаны только с четырьмя филами:
1) Actinobacteria (36,6%);
2) Firmicutes (34,3%);
3) Proteobacteria (11,9%);
4) Bacteroides (9,5%).
Анализ сайтов распределения бактериальных фил (групп микроорганизмов, объединенных общим родством) у человека по анализу 16S рРНК-секвенирования показал, что самой населенной частью организма является пищеварительный тракт, где обитает 75–78% микроорганизмов — в основном бактерий (Firmicutes, Bacteroides, Actinobacteria и Proteobacteria), в выстилке кишечника обнаруживается от 5000 до 35 000 видов микроорганизмов. Эти факты укладывались в картину традиционных представлений о том, что желудочно-кишечный тракт связан с наиболее высокой бактериальной нагрузкой. Стандартные методы исследования образцов, полученных из локусов с высокой бактериальной нагрузкой, потребовали модификации при изучении сайтов, считавшихся стерильными (легкие), чтобы при обработке ДНК исключать фоновое загрязнение и более четко интерпретировать данные в зависимости от типа образца, объема, анатомического участка и клинических параметров [22].
Изучение физиологической роли микробиоты верхних дыхательных путей (ВДП) представляет особый интерес в свете концепции единства дыхательных путей (United Airways Disease), согласно которой верхние и нижние дыхательные пути считаются единой морфологической и функциональной единицей [23, 24], а связь, существующая между ними, наблюдается в течение многих лет как в отношении здоровья, так и в отношении заболеваний. Анатомические особенности строения дыхательных путей (короткое расстояние от ноздрей до альвеол — 0,5 м, отсутствие каких либо физических барьеров при открытой гортани) обеспечивают быструю микробную иммиграцию в нижние отделы дыхательных путей. Изменения микробных сообществ в ВДП у здоровых индивидов и при патологии позволяют лучше понимать их роль в регуляции иммунного контроля в дыхательных путях.
Связь между носовой микробиотой и реактивным, аллергическим или неаллергическим воспалением как верхних, так и нижних дыхательных путей включает сложную сеть процессов, начиная от рождения до старости. У новорожденных колонизация ВДП происходит в течение первых 2–3 суток. Возрастные особенности расселения микрофлоры представлены в обзорной статье [25].
Сразу же после родов микробиота дыхательных путей новорожденного аналогична материнской. Микробиота новорожденных относительно однородна по всем участкам дыхательных путей, но очень быстро (в течение дней и недель) дифференцируется в сообщества, специфичные для верхних и нижних дыхательных путей. Примерно до трех лет микробиота ВДП похожа на кишечную, после чего она приобретает относительную специфичность [26].
Адекватное созревание микробиома кишечника в ранний период может являться мощным протективным фактором в отношении бронхиальной астмы [27]. Ранняя колонизация кишечника Firmicutes, Clostridia и Bacteroides (преобладание у недоношенных) при снижении уровня Lactobacillus и Bifidobacteria, скудное микробное разнообразие предрасполагают к развитию атопии.
Проспективное наблюдение показало, что у детей в возрасте 1 года с незрелой микробной композицией кишечника наблюдается повышенный риск развития астмы в возрасте 5 лет. Эта ассоциация проявляется только у детей, родившихся у астматических матерей, что свидетельствует о том, что отсутствие микробной стимуляции в течение первого года жизни может спровоцировать наследственный риск астмы. Напротив, адекватное созревание микробиома кишечника в этот период может защитить этих детей. Эти находки отчасти поддерживают «гигиеническую гипотезу» увеличения числа больных с аллергическими заболеваниями. Разнообразие микробиома слизистой оболочки ВДП, вероятно, отражает бесперебойный баланс полезных микроорганизмов и патогенных микроорганизмов, таких как Moraxella catarrhalis, который связан с последующим развитием астмы и пневмонии. Кроме того, такие роды, как Ruminococcus и Bacteroides — специфические ферментеры растительных волокон, участвуют в защите от астмы посредством производства короткоцепочечных жирных кислот, летучих веществ, способных снижать аллергическое воспаление дыхательных путей, опосредованное клетками Т-хелперов типа 2 [28].
В отличие от традиционно проводимых культуральных исследований по ассоциации конкретных бактериальных паттернов с воспалительными профилями заболеваний, методы молекулярной биологии позволили выявлять более разнообразную микробиоту, чем считалось ранее, в том числе в ВДП, и высказать предположение о дополнительном защитном эффекте микробного разнообразия на астму. Первые результаты секвенирования по отношению к дыхательным путям здоровых субъектов привели к следующим фундаментальным выводам: у здоровых людей не только верхние, но и нижние дыхательные пути в норме содержат различные сообщества микроорганизмов. Дыхательные пути пациентов с респираторными заболеваниями содержат различные бактериальные сообщества, которые относительно обогащены типом Proteobacteria [29].
ВДП являются магистральным путем для осаждения бактериальных клеток из воздуха. Идентифицированы доминантные микроорганизмы на слизистых ВДП по ходу воздушного потока, начиная от ноздрей, полости носа, носоглотки [30]. Типичной резидентной флорой в этих локусах являются представители Actinobacteria, Firmicutes и Proteobacteria.
При заболеваниях ВДП, включая аллергический ринит, хронический риносинусит с полипами или без полипов, муковисцидоз, характер микробиоты и воспалительные профили существенно отличаются [31].
Для понимания их роли в патогенезе астмы важную роль сыграли дополнительные исследования носовых таксонов c помощью секвенирования 16S рибосомной РНК. Существуют различия в микробиоме носа у больных с астмой при обострении и стабильном течении. Носовая микробиота у пациентов со стабильной астмой была обогащена таксонами из Bacteroides и Proteobacteria. При обострении астмы более широко представлены четыре вида — Prevotella buccalis, Dialister invisus, Gardnerella vaginalis, Alkanindiges hongkongensis. Такие различия не исключают возможностей использования назальных таксонов как биомаркеров активности астмы [32].
Существует определенная топографическая непрерывность бактериальных популяций в респираторном тракте человека [33], следующим вслед за носом сайтом, детально изученным, стала микробиота носоглотки.
Микробиота носоглотки рассматривается как детерминанта для распространения инфекции на нижние дыхательные пути, тяжести сопровождающих воспалительных симптомов и риска развития будущей астмы. С одной стороны, носоглотка — резервуар для микробов, связанных с острыми респираторными инфекциями (ОРИ). Но пневмонии, возникающие в результате ОРИ в младенчестве, связаны с развитием астмы. Изучение микробиома носоглотки у 234 детей в течение критического первого года жизни показало, что у большинства младенцев первоначально отмечена колонизация Staphylococcus или Corynebacterium, в последующем — стабильная колонизация Alloiococcus или Moraxella. Вирусы инициировали преходящие вторжения Streptococcus, Moraxella или Haemophilus. Ранняя бессимптомная колонизация Streptococcus была сильным предиктором астмы, а использование антибиотиков нарушало бессимптомные образцы колонизации. В отсутствие эффективных антивирусных терапий нацеливание на патогенные бактерии в микробиоме носоглотки может представлять собой профилактический подход к астме [34].
В систематическом обзоре исследований микробиома околоносовых пазух, в которых использовали глубокое секвенирование гена рибосомальной РНК 16S [35], дана информация о выявлении в среднем 1587 таксонов (диапазон 911–2330). Несмотря на гетерогенность исследований, в каждой выборке контрольных пациентов и пациентов с хроническими риносинуситами были идентифицированы филы Firmicutes, Actinobacteria и Bacteroides. Не было обнаружено существенных различий между микробиотой здоровых и микробиотой пациентов с хроническим риносинуситом, но при некоторых фено/эндотипах хронического риносинусита отмечалось обогащение золотистым стафилококком.
Исследование специфического влияния конкретных бактерий на иммунный ответ слизистых носа и околоносовых пазух проливает новый свет на патофизиологию как хронических ринитов, риносинуситов, так и их влияния на астму [31].
Окончание статьи читайте в следующем номере.
* ФГБОУ ВО СГМУ им. В. И. Разумовского МЗ РФ, Саратов
** Лидс Тринити университет, Лидс, Великобритания
Роль микробиома дыхательных путей в респираторном здоровье (часть 1)/ Н. Г. Астафьева, Д. Ю. Кобзев, И. В. Гамова, И. А. Перфилова, Е. Н. Удовиченко, Л. В. Скучаева, И. Э. Михайлова
Для цитирования: Лечащий врач № 4/2019; Номера страниц в выпуске: 12-15
Теги: микробиом человека, воспаление, бронхиальная обструкция.
- гашетку в пол песня
- альтернатива гкл для стен