межколонное пространство скважины что это

Большая Энциклопедия Нефти и Газа

Межколонное пространство

Межколонное пространство на устье скважины спрессовывается водой на давление, не превышающее остаточную прочность предыдущей колонны. [1]

Межколонное пространство герметизируют специальным узлом шакера, который состоит из верхнего и нижнего ярусов, вставлен-шых в цилиндрическую расточку, предусмотренную в смежных корпусах колонных головок. [2]

Межколонное пространство герметизируют при помощи превенто-ра или фонтанной арматуры. В состав колонной головки входит пьедестал для установки фонтанной арматуры и перфорационной задвижки. [3]

Межколонное пространство герметизируют специальным узлом пакера, который состоит из верхнего и нижнего ярусов, вставленных в цилиндрическую расточку, предусмотренную в смежных корпусах колонных головок. [5]

Герметизация межколонного пространства и фланцевого соединения осуществляется с помощью верхнего и нижнего пакеров из эластомеров или уплотнений различной конструкции. [7]

Газ в межколонное пространство зацементированных до устья скважин мигрирует по негерметичному заколонному пространству. [10]

При цементировании межколонного пространства не до устья, до проведения разгрузки колонны на клинья осуществляют ее натяжку. Это необходимо для предотвращения нарушения прочности незацементированной части колонны в процессе нагружения ее давлением при наличии перепада температур. [11]

При опрессовке межколонного пространства давление снижалось с 8 до 7 МПа за 30 мин, что было объяснено пропусками в обвязке устья скважины. [12]

Источник

Проблемы межколонных давлений, современные пути их решения и способы предупреждения

межколонное пространство скважины что это. Смотреть фото межколонное пространство скважины что это. Смотреть картинку межколонное пространство скважины что это. Картинка про межколонное пространство скважины что это. Фото межколонное пространство скважины что это

ООО «ПКФ «Недра-С» начала свою деятельность с 2000 года. За столь значительный период фирма зарекомендовала себя как надежный, ответственный партнер в сфере сервисных услуг нефтегазодобывающей отрасли.Используемые компанией технологии позволяют решать геологические и технические вопросы при бурении, эксплуатации и ремонте скважин. Применение собственных инновационных технологий:

Методы основаны на изучении пространственного и временного распределения амплитудно-частотных характеристик геоакустических сигналов (ГАС), генерируемых микровибрациями геосреды.

Методы фиксируют уровень вибраций геосреды, вызванных как проявлением современной геодинамики, так и процессами флюидогазодинамики. Микровибрации геосреды возникают при движения пластовой воды, углеводородной жидкости, газа или их смесей через пустоты за обсадными колоннами, через перфорационные отверстия или негерметичные соединения подземного оборудования скважины. Генерация колебаний зависит от следующих факторов: объём флюида, разность давлений по стволу скважины, траектория пути флюида, структурные особенности среды, по которой движется флюид и др.

Эти колебания детектируются и регистрируются высокочувствительной аппаратурой, способной фиксировать акустический отклик геосреды на деформации порядка 10‾8-10¯11м.

Колебания в диапазоне частот 100-10000 Гц проходят через сталь, газ, жидкость и другие среды. Хотя в этих средах и происходит ослабление сигналов, но оно невелико, и при помощи высокочувствительной аппаратуры движение флюидов обнаруживается и при многорядной конфигурации скважин. Любое колебание ослабевает по своей интенсивности с пройденным расстоянием. При увеличении частоты колебаний возрастает их затухание с расстоянием. Низкие частоты подвержены меньшему затуханию.

Проведенные работы по методике измерений ГАС (геоакустические сигналы) показали, что влияние обсадных колонн на показания метода отсутствует. Это было получено из сравнения измерений геоакустических сигналов в открытом стволе скважины и после спуска обсадной колонны.

При измерении геоакустических сигналов в скважине используется трехкомпонентная система ортогонально расположенных датчиков-акселерометров, жестко скрепленных с корпусом скважинного прибора; эта система датчиков регистрирует микровибрации среды в вертикальном и горизонтальных направлениях. На основе модельных лабораторных испытаний и опыта исследования скважин найдено соответствие амплитудных уровней сигналов в регистрируемых диапазонах частот движущемуся потоку флюида (пластовая вода, углеводородная жидкость, газ или их смесь), а также вероятное местоположение этого потока.
межколонное пространство скважины что это. Смотреть фото межколонное пространство скважины что это. Смотреть картинку межколонное пространство скважины что это. Картинка про межколонное пространство скважины что это. Фото межколонное пространство скважины что этоК основным преимуществам данных методов над традиционно используемыми геофизическими методами при решении идентичных задач относятся:

высокая чувствительность аппаратуры;
— дальность исследования более 10 м;
— обнаружение движения флюида за обсадными колоннами при многорядной конструкции скважины;
— обнаружение негерметичностей в обсадных колоннах и перетоков через них при многорядной конструкции скважины;
— направленная регистрация вибрации, что позволяет всесторонне изучить процессы флюидодинамики (в горизонтальном и вертикальном направлении);
— определение интервалов поступления газа, нефти и воды в скважину;
— определение интервалов поступления газа, нефти и воды в скважину через НКТ;
— исследования методом не требует глушения скважины;
— способность работать в агрессивной среде;
— в аппаратуре отсутствуют ионизирующие источники.

2. Ликвидация межколонных давлений

Технология основана на закачке в МКП с устья скважины специальных герметизирующих составов (ВСН, WARP, ЩВПС) с целью ликвидации миграции флюида по микротрещинам и дефектам цементного камня.

1) Вязкопластичный герметизирующий состав на масляной основе – применяется для ликвидации межколонных перетоков в МКП при условии подъема цемента до устья скважины и наличии приемистости тампонажного состава по межколонному пространству;

2) WARP или его аналог ВСН – применяется для ликвидации межколонных давлений при условии недоподъема цемента до устья скважины.

Закачка происходит по принципу нагнетания состава в МКП (через межколонный отвод) с его проникновением в микро- и макродефекты цементного камня, что приводит к ликвидации фильтрационных каналов. Выбор и необходимый объем состава определяется по результатам геофизических исследований по определению источников МКД геоакустическими методами и гидродинамических исследований, направленных на определение газожидкостных характеристик МКП. Гидродинамические исследования включают в себя:

межколонное пространство скважины что это. Смотреть фото межколонное пространство скважины что это. Смотреть картинку межколонное пространство скважины что это. Картинка про межколонное пространство скважины что это. Фото межколонное пространство скважины что это

Рисунок 2 Технологии ликвидации межколонных давлений с недоподъемом и подъемом цемента до устья и наличии фильтрационных каналов в цементном камне

По окончании работ по закачке специальных герметизирующих составов проводится контрольные исследования геоакустическими методами (ТК ГАК, СТК МГС). Эти исследования позволяют определить глубину проникновения специального состава в МКП, степень изоляции, оценить изменения в поведении источника МКД.

По результатам контрольных исследований выдается окончательное заключение о результатах проведенных работ на скважине и необходимые рекомендации по осуществлению контроля за состоянием межколонного пространства в процессе эксплуатации скважины.

3. Импульсно-волновые методы

Основной причиной образования заколонных перетоков является плохое качество крепления (цементирования) обсадных колонн, в результате чего образуется гидродинамическая связь вскрытых бурением флюидонасыщенных пластов со стволом скважины и неконтролируемый гидродинамический процесс в заколонном пространстве, определяющий техническое состояние скважины.

При наличии достаточных перепадов давления между пластами заколонные перетоки приводят к образованию межпластовых перетоков. Образовавшиеся перетоки очень часто проявляются повышенными давлениями в межколонных пространствах (МКП) и несут опасность грифонообразования. Данные проблемы широко распространены на большинстве нефтяных и газовых месторождениях России и мира.

Многие применяемые в отечественной и зарубежной практике буровые тампонажные растворы и технология крепления обсадных колонн не вполне обеспечивают эффективную изоляцию проницаемых пластов от ствола скважины.

Предлагаемая технология импульсно-волновой обработки тампонажных растворов в процессе крепления обсадных колонн позволяет обеспечить надежное разобщение флюидонасыщенных пластов и герметизацию заколонного пространства.

Суть предлагаемого способа обработки тампонажных растворов заключается в том, что источник воздействия включается в процессе крепления обсадной колонны и генерирует мощные импульсы давления, которые вызывают упругую деформацию обсадной колонны, переходящую в ее затухающие колебания. Колебания обсадной колонны создают вибро- акустическое поле в тампонажном растворе.

Техническая реализация этого способа сводится к следующему. К цементировочной головке и к затрубному пространству, посредством гибких буровых рукавов, подключаются генераторы силовых волн (УГСВ-2, УГСВ-3). Производится подсоединение основных узлов для волнового воздействия (Рисунок 3). УГСВ обвязываются с насосной станцией, компрессором, после чего производится закачка цементного раствора в скважину. Запуск в работу установки УГСВ-3 производится после сброса продавочной пробки.

При этом генерируемые продольные импульсы давления, распространяющиеся в рабочем агенте внутри обсадной колонны, передают энергию на стенку колонны, формируя в ней поперечные импульсы колебаний. Потеря энергии импульса в рабочем агенте не происходит в силу его малой ширины (10-6 м = 0,0001 мм) и продолжительности (2,5·10-8 с). Импульсы давления, генерируемые УГСВ-3, следуют с периодом 0,2 с. Дополнительное акустическое давление составляет внутри обсадной трубы в рабочем агенте 10 МПа, в заколонном пространстве в тампонажном растворе 4,5 МПа. На элементы технологической оснастки колонны эти импульсы давления влияния не оказывают в силу их кратковременности и локальности (малой протяженности). Крупные объекты оснастки «прозрачны» для них. Характерные элементы микроструктуры тампонажного раствора имеют размеры одного порядка с импульсами давления, поэтому тампонажный раствор в зоне действия импульса приходит в движение. За период обработки 20 мин, в каждой точке заколонного пространства происходит около 6000 элементарных актов импульсно-волнового воздействия.

межколонное пространство скважины что это. Смотреть фото межколонное пространство скважины что это. Смотреть картинку межколонное пространство скважины что это. Картинка про межколонное пространство скважины что это. Фото межколонное пространство скважины что это

Рисунок 3 Схема монтажа УГСВ-3 и УГСВ-2 на устье скважины при импульсно-волновом воздействии на тампонажный раствор в процессе цементирования обсадной колонны

Импульсно-волновое воздействие на тампонажный раствор установкой УГСВ-3 осуществляется на протяжении всего процесса продавливания тампонажной смеси и после получения «СТОП» до начала схватывания.

Дополнительно, после продавки цементного раствора и получения сигнала «СТОП», в затрубном пространстве установкой УГСВ-2 генерируются импульсы давления с периодом ≈ 0,1 с.Дополнительное воздействие через затрубное пространство усиливает действие вибро-акустического поля в интервале 0-1500 м, что позволяет повысить качество крепления в этой зоне.

Возникающие при прохождении импульсов вихревые акустические течения активируют процессы массообмена в тампонажном растворе на микроуровне, что приводит к более однородному распределению дисперсной фазы и жидкости затворения в объеме раствора.

Важным показателем качества цементирования является образование прочного однородного промежуточного слоя на границе металл-раствор, в котором частицы раствора и стенки обсадной трубы химически связаны. Сольватные оболочки частиц цемента при импульсно-волновом воздействии деформируются таким образом, что в зоне контакта с металлом она становится тоньше, что обеспечивает ускорение и увеличивает частоту элементарных актов образования химических связей. Вследствие этого прочность и герметичность контактной зоны цементного камня повышается, снижается риск вертикальных перемещений колонны под действием собственного веса в период эксплуатации скважины.

Предлагаемая технология обработки тампонажных растворов позволяет значительно снизить риск возникновения заколонных, межпластовых и межколонных перетоков за счет более полного вытеснения бурового раствора и промывочной жидкости из околоскважинной зоны повышенной проводимости. Вибрация раствора под действием импульсов давления приводит к разрушению глинистой корки. Кроме того, дополнительное давление вытесняет остатки технологических жидкостей вглубь породы с замещением освободившихся пор, трещин и каверн тампонажным раствором, улучшая кольматацию.

Совокупность описанных процессов приводит к уменьшению сроков схватывания тампонажного раствора, улучшению структуры, прочностных и эксплуатационных характеристик цементного камня, что и приводит в конечном итоге к повышению качества крепления.

межколонное пространство скважины что это. Смотреть фото межколонное пространство скважины что это. Смотреть картинку межколонное пространство скважины что это. Картинка про межколонное пространство скважины что это. Фото межколонное пространство скважины что это

Рисунок 4 Схема формирования эффекта импульсно-волновой обработки тампонажного раствора

Источник

МАТЕРИКОВАЯ ДОБЫЧА НЕФТИ

ПОДГОТОВКА СКВАЖИН К ЭКСПЛУАТАЦИИ

Понятие конструкции скважины

— это совокупность элементов крепи горной выработки с поперечными размерами, несоизмеримо малыми по сравнению с ее глубиной и протяженностью, обеспечивающая при современном техническом и технологическом вооружении безаварийное, с учетом охраны недр, экономичное строительство герметичного пространственно устойчивого канала между флюидонасыщенными пластами и остальной частью вскрытого геологического разреза, а также дневной поверхностью, эксплуатирующегося в заданных режимах и времени в зависимости от назначения: изучение геологического разреза, разведка и оценка газонефтеносности отложений, добыча продукции, поддержание пластовых давлений, наблюдение за режимом эксплуатации месторождения и др.

В газонефтяной отрасли нет также единого методического подхода к оценке качества проектирования и строительства скважин, в том числе их конструкции.

Основные элементы скважины

— это дно ствола скважины.

— это горная выработка, внутри которой располагаются обсадные колонны и производится углубление скважины.

— участок скважины, непосредственно соприкасающийся с продуктивным нефтяным или газовым горизонтом. Фильтром может служить необсаженный колонной участок ствола, специальное устройство с отверстиями, заполненное гравием и песком, часть эксплуатационной колонны или хвостовика с отверстиями или щелями.

— затвердевший цементный раствор, закачанный в кольцевое пространство между стволом и обсадной колонной с целью его герметизации.

Цементное кольцо предназначено для надежной изоляции друг от друга интервалов геологического разреза (в том числе и продуктивных) на весь период строительства, эксплуатации и обеспечения жесткой связи обсадных колонн со стенками скважины с целью формирования прочной и герметичной постоянной крепи.

Система обсадных колонн и цементных колец за ними составляют скважины.

Обсадные колонны

Обсадные колонны предназначены для изоляции стенок скважин от рабочего пространства ствола в процессе бурения и эксплуатации и обеспечивают требуемую прочность и герметичность при воздействии на них внутренних и внешних воздействий в первую очередь давления. Для создания необходимой изоляции кольцевого пространства, остающегося между обсадными колоннами, оно заливается жидким цементным раствором, твердеющим через определенное время.

Обсадные колонны по назначению подразделяются следующим образом.

— первая колонна труб или одна труба, предназначенная для закрепления приустьевой части скважин от размыва буровым раствором и обрушения, а также для обеспечения циркуляции жидкости. Направление, как правило, одно. Однако могут быть случаи крепления скважин двумя направлениями, когда верхняя часть разреза представлена лессовыми почвами, насыпным песком или имеет другие особенности. Обычно направление спускают в заранее подготовленную шахту или скважину и бетонируют на всю длину. Иногда направление забивают в породу, как сваю.

Различают шахтное (или шахтовое) направление и удлиненное направление. Шахтное устанавливается, как правило, во всех случаях и его длина составляет 3-10 м. В зависимости от конкретных условий может устанавливаться удлиненное направление или от одного до нескольких направлений и в этом случае длина может достигать 100 м. Направление спускается по возможности в глинистый пласт. Диаметр колонны колеблется от 245 до 1250 мм. Трубы, используемые в качестве направления, на прочность не рассчитываются и не опрессовываются.

— колонна обсадных труб, предназначенных для разобщения верхнего интервала разреза горных пород, изоляции пресноводных горизонтов от загрязнения, монтажа противовыбросового оборудования и подвески последующих обсадных колонн.

Кондуктор в зависимости от геологических условий устанавливается на глубину в среднем до 100 м, а максимальная глубина до 600 м. Диаметр кондуктора, как правило, колеблется в диапазоне 177-508 мм. Он опрессовывается, как и цементное кольцо.

Шахтное направление и кондуктор являются обязательными элементами конструкции скважины.

Промежуточная обсадная колонна (их может быть несколько) служит для разобщения несовместимых по условиям бурения зон при углублении скважины до намеченных глубин.

Промежуточные обсадные колонны могут быть следующих видов:

Секционный спуск обсадных колонн и крепление скважин хвостовиками являются, во-первых, практическим решением проблемы спуска тяжелых обсадных колонн и, во-вторых, решением задачи по упрощению конструкции скважин, уменьшению диаметра обсадных труб, зазоров между колоннами и стенками скважины, сокращению расхода металла и тампонирующих материалов, увеличению скорости бурения и снижению стоимости буровых работ.

— последняя колонна обсадных труб, которой крепят скважину для разобщения продуктивных горизонтов от остальных пород и извлечения из скважины нефти или газа или для нагнетания в пласты жидкости или газа. Иногда в качестве эксплуатационной колонны может быть использована (частично или полностью) последняя промежуточная колонна.

Диаметр обсадной колонны

Проектирование диаметров обсадных колонн и долот начинают с эксплуатационной колонны и далее методом снизу-вверх. Расчет диаметров обсадных труб ведется «изнутри» с диаметра эксплуатационной колонны. Исходя из предполагаемого дебита скважины и экономического обоснования, выбирается диаметр эксплуатационной колонны. Диаметр эксплуатационной колонны определяет диаметры бурения под обсадные колонны для всей скважины, а количество промежуточных колонн определяет конструкцию колонной головки. Увеличение диаметра эксплуатационной колонны позволяет использовать более производительное скважинное оборудование, позволяет эксплуатировать в скважине одновременно несколько пластов и облегчает проведение подземного ремонта. С другой стороны увеличение диаметра эксплуатационной колонны ведет к увеличению металлоемкости обсадных колонн, объему бурения и цементирования. Возрастают нагрузки на колонную головку и ее металлоемкость. Все это ведет к увеличению затрат на строительство скважины. Уменьшение диаметра эксплуатационной колонны снижает стоимость ее строительства, но увеличивает затраты, связанные с эксплуатацией скважины. Так применение малогабаритного оборудования ведет к увеличению затрат на приобретение до 2-3х раз. Усложняется поведение подземного ремонта, что ведет, как правило, к увеличению затрат времени, и, следовательно, и материалов, а в некоторых случаях не позволяет произвести необходимый ремонт.

Сооружение скважины

Только сооруженная скважина может ответить на вопрос: имеется ли в данном районе нефтяное или газовое месторождение и какова промышленная ценность залежи углеводородов.

Сооружение скважины, независимо от ее назначения (разведочная, параметрическая, эксплуатационная и т.д.), включает в себя следующие основные этапы:

При бурении в скважину последовательно спускается определенная конструкция, состоящая из обсадных труб. Каждая последующая колонна вставляется в предыдущую, и поэтому имеет все меньший диаметр.

Дно скважины называется забоем. После проведения цементирования скважины образуется новый забой, который называется «искусственный забой». В процессе эксплуатации на забой осаждаются примеси, части изношенного оборудования или упущенный при проведении подземного ремонта инструмент и т.п., что при замерах изменяет глубину скважины и новая точка называется «текущий забой».

После создания герметичной конструкции скважины в эксплуатационную колонну, напротив продуктивного пласта, спускается на забой устройство (перфоратор), которое проделывает отверстия в обсадных трубах и цементном кольце и соединяет продуктивный пласт и скважину. Эти отверстия заполняются газом и пластовой жидкостью (нефтью), поступающей из пласта под избыточным давлением и заполняют скважину.

Требования к конструкции скважин

В зависимости от назначения скважин конструкция может существенно изменяться, но всегда должна удовлетворять некоторым общим требованиям, которые сводятся к следующему:

Кроме перечисленных, конструкция скважины должна удовлетворять определенным технологическим требованиям, основными из которых являются:

Разработка конструкции скважины

Основные параметры конструкций скважины: число и диаметр обсадных колонн, глубина их спуска, диаметр долот, которые необходимы для бурения под каждую обсадную колонну, а также высота подъема и качество тампонажного раствора за ними, обеспечение полноты вытеснения бурового раствора.

Разработка конструкции скважины базируется на следующих основных геологических и технико-экономических факторах:

К объективным геологическим факторам относят предполагаемую и фактическую литологию, стратиграфию и тектонику разреза, мощность пород с различными проницаемостью, прочностью, пористостью, наличие флюидосодержащих пород и пластовые давления.

Геологическое строение разреза горных пород при проектировании конструкции скважин учитывают как неизменный фактор.

В процессе разработки залежи ее начальные пластовые характеристики будут изменяться, так как на пластовые давления и температуру влияют продолжительность эксплуатации, темпы отбора флюидов, способы интенсификации добычи и поддержания пластовых давлений, использование новых видов воздействия на продуктивные горизонты в целях более полного извлечения нефти и газа из недр, поэтому эти факторы необходимо учитывать при проектировании конструкции скважин.

Конструкция скважин должна отвечать условиям охраны окружающей среды и исключать возможное загрязнение пластовых вод и межпластовые перетоки флюидов не только при бурении и эксплуатации, но и после окончания работ и ликвидации скважины. В связи с этим необходимо обеспечивать условия для качественного и эффективного разобщения пластов. Это один из главнейших факторов.

Таким образом, принципы проектирования конструкций скважин прежде всего должны определяться геологическими факторами.

Простая конструкция (кондуктор и эксплуатационная колонна) не во всех случаях рациональна. В первую очередь это относится к глубоким скважинам (4000 м и более), вскрывающим комплекс разнообразных отложений, в которых возникают различные, иногда диаметрально противоположные по характеру и природе осложнения.

Следовательно, рациональной можно назвать такую конструкцию, которая соответствует геологическим условиям бурения, учитывает назначение скважины и другие, отмеченные выше, факторы и создает условия для бурения интервалов между креплениями в наиболее сжатые сроки. Последнее условие является принципиальным, так как практика буровых работ четко подтверждает, что чем меньше времени затрачивается на бурение интервала ствола между креплениями, тем меньше число и тяжесть возникающих осложнений и ниже стоимость проводки скважины.

Источник

Большая Энциклопедия Нефти и Газа

Межколонное пространство

После этого в межколонное пространство закачивают незамерзающую жидкость с использованием разделителя для полного вытеснения воды. Весь процесс промывки межколонного пространства водой и ее последующего замещения держится под строгим контролем специальной системой автоматики. [16]

Для это-о в межколонное пространство пере-вижным компрессором нагнетают воз-ух. Сжатый воздух оттесняет воду вниз башмаку насосно-компрессорных труб, затем, прорвавшись внутрь этих труб, азирует жидкость и выталкивает ее на невную поверхность. По мере насыще-ия жидкости воздухом плотность и дав-ение столба ее уменьшаются, а после ыброса каждой порции воды из труб ровень жидкости в скважине падает, [ осле того как начнется приток пласто-эй жидкости в скважину, компрессор гключают. [18]

В случае бурения межколонное пространство отдельных скважин используют для сброса излишков наработанного глинистого раствора и технической воды. При этом в отложения, расположенные ниже башмака кондуктора, в течение цикла строительства скважин куста закачивают значительные объемы утилизируемой жидкости. [19]

Межпластовые перетоки по негерметичному межколонному пространству добывающих и водонагнетательных скважин не создают серьезных осложнений в разработке. [21]

Если давление в межколонном пространстве высокое и продолжает увеличиваться, что свидетельствует о нарушении герметичности, необходимо срочно об этом сообщить дежурному инженеру. [22]

При наличии в межколонном пространстве интервала открытого стратиграфического разреза оценка герметичности при опрессовке оценивается не по падению давления, а по отсутствию видимых утечек рабочего агента по соединениям устьевой обвязки и заколонных проявлений вокруг устья скважины. Величина давления устанавливается проектом. [23]

После прекращения закачки жидкости межколонное пространство на устье быстро открывают, и на пласт действует квазигидроударная депрессия, величина которой эквивалентна энергии сжатого воздуха. Заменой статической депрессии на гидроудар обеспечивается повышение эффективности метода обычной закачки воздуха компрессором. [24]

В первом случае в межколонное пространство было закачано 2 4 м3 цементного раствора и после ОЗЦ цементное кольцо отбито на глубине ПО м вместо 77 м по расчету, то есть 1 1 м3 цементного раствора поглощено стенками скважины. Во втором случае в межколонное пространство было закачано 3 1 м3 цементного раствора и зафиксирован выход его на устье. [25]

При испытании полностью зацементированного межколонного пространства ( МКП) скважины на герметичность давлением 10 6 МПа на всех скважинах за 30 минут это давление также снижается на недопустимую для газовых скважин величину. Давление снижается даже до 0 4 МПа за 30 мин, например на скв. Куда же уходит жидкость испытания. [26]

Монтаж горизонтальных воздуховодов в межколонном пространстве ( рис. 106) начинают с установки внутри колонн промежуточных патрубков, временно прикрепляя их к колоннам. Длина патрубков должна быть несколько больше ширины колонн, чтобы их фланцы были доступны для сборки. Укрупненный блок, поднятый в проектное положение, соединяют с патрубками и крепят к заранее выверенным подвескам. [27]

При обнаружении давления в межколонном пространстве должны быть проведены необходимые исследования и приняты оперативные меры по выявлению и устранению причины перетока. По результатам исследований решается вопрос о возможности эксплуатации скважины. [28]

Если столб воды в межколонном пространстве имеет небольшую высоту и снизу подпирается герметичным цементным камнем, то ледяная пробка в нем отстает в своем росте от той, которая образуется внутри колонны, но давление в нем стремительно возрастает. В итоге оно становится достаточным, чтобы смять эксплуатационную колонну под фронтом растущей в ней пробки. Однако нередко развивающееся в межколонном пространстве давление воды разрывает кондуктор или над поверхностью земли, или немного ниже поверхности. [29]

Железобетонная плита днища в межколонном пространстве испытывает незначительные напряжения изгиба и армируется конструктивно без расчета. [30]

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *