метанол газ что это
Метанол: химические свойства и получение
Метанол CH3OH, метиловый спирт – это органическое вещество, предельный одноатомный спирт .
Общая формула предельных нециклических одноатомных спиртов: CnH2n+2O.
Строение метанола
В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.
Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4). |
Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:
Водородные связи и физические свойства метанола
Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:
Поэтому метанол – жидкость с относительно высокой температурой кипения (температура кипения метанола +64,5 о С).
Водородные связи образуются не только между молекулами метанола, но и между молекулами метанола и воды. Поэтому метанол очень хорошо растворимы в воде. Молекулы метанола в воде гидратируются:
Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде. |
Метанол смешивается с водой в любых соотношениях.
Изомерия метанола
Для метанола не характерно наличие структурных изомеров – ни изомеров углеродного скелета, ни изомеров положения гидроксильной группы, ни межклассовых изомеров.
Химические свойства метанола
Метанол – органическое вещество, молекула которого содержит, помимо углеводородной цепи, одну группу ОН.
1. Кислотные свойства метанола
Метанол – неэлектролит, в водном растворе не диссоциирует на ионы; кислотные свойства у него выражены слабее, чем у воды. |
1.1. Взаимодействие с раствором щелочей
Метанол с растворами щелочей практически не реагирует, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.
Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому метанол не взаимодействуют с растворами щелочей.
1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
Метанол взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.
Метилаты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.
Например, метилат калия разлагается водой: |
CH3OK + H2O → CH3-OH + KOH
2. Реакции замещения группы ОН
2.1. Взаимодействие с галогеноводородами
При взаимодействии метанола с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.
Например, метанол реагирует с бромоводородом. |
2.2. Взаимодействие с аммиаком
Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.
Например, при взаимодействии метанола с аммиаком образуется метиламин. |
2.3. Этерификация (образование сложных эфиров)
Метанол вступает в реакции с карбоновыми кислотами, образуя сложные эфиры.
Например, метанол реагирует с уксусной кислотой с образованием метилацетата (метилового эфира уксусной кислоты): |
2.4. Взаимодействие с кислотами-гидроксидами
Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.
Например, метанол взаимодействует с азотной кислотой : |
3. Реакции замещения группы ОН
В присутствии концентрированной серной кислоты от метанола отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.
3.2. Межмолекулярная дегидратация
При низкой температуре (меньше 140 о С) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.
Например, при дегидратации метанола при температуре до 140 о С образуется диметиловый эфир: |
4. Окисление метанола
Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).
В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.
Метанол окисляется сначала в формальдегид, затем в углекислый газ: Метанол → формальдегид → углекислый газ |
Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.
Легкость окисления спиртов уменьшается в ряду:
метанол
4.1. Окисление оксидом меди (II)
Метанол можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Метанол окисляется до метаналя.
Например, метанол окисляется оксидом меди до муравьиного альдегида |
4.2. Окисление кислородом в присутствии катализатора
Метанол можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Метанол окисляется до метаналя.
4.3. Жесткое окисление
При жестком окислении под действием перманганатов или соединений хрома (VI) метанол окисляется до углекислого газа.
Спирт/ Окислитель | KMnO4, кислая среда | KMnO4, H2O, t |
Метанол СН3-ОН | CO2 | K2CO3 |
Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ |
4.4. Горение метанола
При сгорании спиртов образуются углекислый газ и вода и выделяется большое количество теплоты.
Например, уравнение сгорания метанола: |
5. Дегидрирование спиртов
При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола образуется альдегид.
Получение метанола
1. Щелочной гидролиз галогеналканов
При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.
Например, при нагревании хлорметана с водным раствором гидроксида натрия образуется метанол |
2. Гидратация алкенов
Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.
Однако получить метанол гидратацией алкенов нельзя.
3. Гидрирование карбонильных соединений
Присоединение водорода к альдегидам и кетонам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов — вторичные спирты, а из формальдегида образуется метанол.
Например, при гидрировании формальдегида образуется метанол |
CH2=O + H2 → CH3-OH
4. Промышленное получение метанола из «синтез-газа»
Каталитический синтез метанола из монооксида углерода и водорода при 300-400°С и давления 500 атм в присутствии смеси оксидов цинка, хрома и др.
Сырьем для синтеза метанола служит «синтез-газ» (смесь CO и H2), обогащенный водородом:
Геоэкология метанола, используемого в газовой промышленности
Рассмотрена геоэкология метанола, используемого в газовой промышленности в качестве ингибитора гидратообразования.
Рассмотрена геоэкология метанола, используемого в газовой промышленности в качестве ингибитора гидратообразования.
Приведены примеры и описаны риски загрязнения окружающей среды метанолом, а также его токсического действия на человека. Представлены гигиенические нормативы метанола для контроля загрязнения им окружающей среды. Охарактеризованы различные способы утилизации и очистки сточных вод и почв, содержащих метанол (сжигание, захоронение, ректификация, ультрафиолетовое облучение, каталитическое и микробиологическое воздействие), как решение проблемы риска загрязнения окружающей среды данным веществом.
Метанол (CH3OH) используется в газовой промышленности как ингибитор гидратообразования, то есть для борьбы с таким нежелательным явлением, как образование при определенных термобарических условиях из воды и низкомолекулярных газов так называемых газовых гидратов в виде твердых кристаллических соединений [1, 2].
Механизм действия метанола, относящегося к классу термодинамических ингибиторов гидратообразования, заключается в снижении активности воды в водном растворе, вследствие чего изменяются равновесные условия образования гидратов. Так, закачка метанола в призабойную зону скважины газогидратных месторождений вызывает не только разложение газовых гидратов на забое скважины, но и улучшает фильтрационные характеристики призабойной зоны, то есть участка пласта, примыкающего к стволу скважины. Кроме того, высокая адсорбционная способность метанола используется для удаления воды после гидростатических испытаний газопроводов, а также в низкотемпературных процессах очистки природного газа от углекислого газа (CO2), сероводорода (H2S) и других серосодержащих органических соединений.
Цель данной работы состояла в анализе, систематизации и обобщении информации, касающейся примеров и риска загрязнения окружающей среды метанолом, используемым в газовой промышленности, токсического его действия на человека, контроля загрязнения окружающей среды, способов утилизации и очистки сточных вод и почв, содержащих данное вещество.
Примеры загрязнения окружающей среды метанолом
Загрязнение окружающей среды метанолом происходит в результате его аварийных выбросов или разливов при производстве, транспортировке и применении данного вещества. При этом количество аварийных выбросов или разливов метанола или промышленных сточных вод, содержащих это вещество нельзя планировать, а избежать их на 100% практически невозможно. Так, недавно в Свердловской области на железнодорожной станции произошла утечка значительного количества метанола (850 л) из цистерны на пути [4]. Серия инцидентов, связанных с высоким загрязнением атмосферного воздуха метанолом, то есть до 10, 15 и 22 предельно допустимой концентрации (ПДК), была зарегистрирована в Тульской области 5. Высокое и экстремально высокое загрязнение метанолом речной воды, соответственно до 32 и 58 ПДК, было установлено в Вологодской области [5, 8]. В одном из городов Кемеровской области в воде скважин на территории химических предприятий был обнаружен метанол в концентрации, превышающей его ПДК, а в Архангельской области метанол был отнесен к числу приоритетных загрязнителей источников питьевой воды, требующих постоянного контроля [9, 10].
Риск загрязнения окружающей среды метанолом
Самый большой риск загрязнения окружающей среды метанолом представляет его транспортировка на газодобывающие предприятия. Известно, что транспортная схема обеспечения газодобывающих предприятий метанолом, существующая в настоящее время, например, в Надым-Пур-Тазовском нефтегазоносном регионе (Ямало-Ненецкий автономный округ, 67 ○ 15′ с.ш., 74 ○ 40′ в.д.) включает несколько этапов, а именно [3]: залив метанола в железнодорожные цистерны на заводе-изготовителе и их транспортировка на головную базу, перелив метанола из железнодорожных цистерн в стационарные емкости для хранения, подготовка метанола к использованию путем добавления красителя или одоранта, перелив метанола из стационарных емкостей в автомобильные цистерны и их транспортировка до базы метанола на газодобывающем предприятии, где осуществляется перелив метанола из автомобильных цистерн в стационарные емкости, затем перелив из стационарных емкостей в другие автомобильные цистерны и транспортировка метанола на конкретные объекты потребления.
Примером чрезвычайно высокого риска для водной среды является транспортировка метанола в короткий летний период навигации на грузовых судах по реке Обь и Тазовской губе (морскому заливу) на Юрхаровское газоконденсатное месторождение Надым-Пур-Тазовского нефтегазоносного региона [11, 12]. Как известно, река Обь и Тазовская губа относятся к водоемам высшей рыбохозяйственной категории, как местам нагула ценных пород осетровых и сиговых рыб.
Токсическое действие метанола на человека
Метанол является сильным, преимущественно нервным и сосудистым ядом с резко выраженным кумулятивным эффектом, то есть усиленным токсическим действием в результате его накопления в организме при кратных поступлениях [14]. Наибольшее количество метанола накапливается в печени и почках [15]. Установлено, что часть поступившего в организм метанола через несколько суток выделяется слизистой оболочкой в просвет желудка и затем снова всасывается. Метанол при пероральном попадании в организм человека вызывает циркуляторный коллапс, то есть острую сосудистую недостаточность, сопровождающуюся резким падением кровяного давления. Особую токсичность метанола связывают с образованием из него в организме формальдегида (НСОН) и муравьиной кислоты (НСООН):
CH3OH → HCOH → HCOOH
За счет образования именно этих веществ, а также медленного распада метанола обусловлена тяжесть интоксикации. При любом пути поступления метанола типичны поражения зрительного нерва и сетчатки глаза, отмечаемые как при острых, так и при хронических интоксикациях. Пары метанола сильно раздражают слизистые оболочки глаз и дыхательных путей.
Ранние симптомы хронической интоксикации метанолом проявляются в виде концентрического сужения границ цветного зрения, нарастающего со временем и атрофии зрительного нерва, то есть уменьшения его размеров, сопровождающегося нарушением или прекращением функции и отеком. У лиц с хронической интоксикацией метанола в производственных условиях возникает изменение белковообразовательной функции печени. Имеют место быстрая утомляемость, головная боль во второй половине дня, раздражительность, плаксивость и боль в правом подреберье. При малых концентрациях метанола отравление развивается постепенно и характеризуется раздражением слизистых оболочек, частыми заболеваниями дыхательных путей, головными болями, звоном в ушах, невритами и расстройствами зрения. Отравление организма при попадании на кожу метанола обычно происходит при одновременном вдыхании его паров. Поступление метанола в организм через кожу и дыхательные пути связано с особыми условиями, как обливом веществом поверхности тела (без проведения немедленной дегазации) и длительным пребыванием в атмосфере, содержащей метанол [15]. Для определения раннего негативного действия метанола представляется важным и необходимым определение данного вещества в биологических жидкостях организма (крови и моче), например, газохроматографическим методом.
Контроль загрязнения окружающей среды метанолом
Таблица 1. Гигиенические нормативы метанола для различных сред и человека
Предельно допустимая концентрация
В воздухе рабочей зоны
Максимальная разовая в воздухе населенных мест
Среднесуточная в воздухе населенных мест
В воде водных объектов
Предельно допустимый уровень
Однако считается, что определение метанола в биологических средах человека (крови и моче) более актуально, чем определение данного вещества в атмосферном воздухе, поскольку разовая непродолжительная проба в зоне дыхания может неадекватно отражать общее воздействие метанола на организм [15].
Способы утилизации и очистки сточных вод и почв, содержащих метанол
Как известно сточные воды, образуемые на предприятиях газовой промышленности, наряду с метанолом содержат ряд других специфических компонентов (углеводороды, фенолы, гликоли, сероводород и другие вещества) [18]. При этом способ утилизации подобного рода сточных вод, например, сжиганием на так называемых газофакельных установках не является экологически безопасным, так как опасные продукты сгорания компонентов сточных вод поступают в атмосферный воздух, затем оседают на почву и открытые водные объекты.
К другому способу утилизации сточных вод, широко практикуемому в газовой промышленности, относится их подземное захоронение. Оно осуществляется путем закачки сточных вод в глубокие, надежно изолированные водоносные горизонты, не содержащие пресных, бальнеологических, минеральных и термальных вод. Подземное захоронение сточных вод в область депрессионной воронки в водонапорной системе разрабатываемого месторождения природного газа может быть осуществлено при невозможности очистки сточных вод от метанола и других компонентов до требуемых ПДК. Так, например, утилизация не поддающихся очистке сточных вод Астраханского газоконденсатного комплекса, производится путем их закачивания через скважины в пласт триасово-нижнемеловых отложений на глубину около 2000 м [19].
Ниже описываются способы, ориентированные на очистку сточных вод с преобладающим содержанием метанола в их составе, так называемой метанолсодержащей воды. Так, в работе [20] представлена технологическая схема извлечения метанола из сточных вод предприятия химической промышленности на основе процесса ректификации, путем испарения жидкости и раздельной конденсации паров различных компонентов. При этом использовался метод периодической ректификации, который в отличие от непрерывного процесса позволяет разделить смесь и извлечь метанол в одной ректификационной колонне вместо двух.
В работе [22] предложена технологическая схема извлечения метанола из производственных сточных вод газоконденсатных месторождений, заключающаяся в регенерации данного вещества ректификацией с последующим глубоким каталитическим окислением его остаточных количеств в кубовом остатке (неиспарившейся жидкости). При этом 100% окисление метанола в кубовом остатке в концентрации до 1,5% достигается при использовании медно-хромо-магниевого и хромо-магниевого катализатора на носителе из оксида алюминия (Al2O3). Продолжительность контакта метанолсодержащей воды с катализатором не менее 0,9 секунд при температуре не ниже 450 ○ С. Между тем исследования [23] показали также возможность 100% очистки сточных вод от метанола на медно-хромо-цинковом катализаторе при 250 ○ С с начальным содержанием вещества до 5%.
В другом способе очистки не только метанолсодержащей воды, но и почвы от метанола используются микроорганизмы. Так, в работах [24, 25] даются практические рекомендации по очистке указанных сред с помощью биопрепаратов в виде высушенных активных биомасс метилотрофных бактерий (Acinetobacter calcoaceticus и Methylomonas methanica), выделенных из озерной воды и почвы. Очистка загрязненных сред от метанола происходит путем микробиологической трансформации (окисления) данного вещества через формальдегид и муравьиную кислоту до диоксида углерода и воды:
Между тем для снижения риска попадания метанола с загрязненной почвы в поверхностные и подземные воды возникает необходимость ее оперативной очистки, которую также проводят с помощью вышеуказанных биопрепаратов [24]. Так, при поверхностном (0-5 см) и подповерхностном (5-30 см) загрязнении почвы метанолом ее обрабатывают специально приготовленной суспензией биопрепарата (в растворе минеральных удобрений). При этом до и после обработки биопрепаратом верхние слои почвенного профиля подвергают рыхлению. При глубинном загрязнении почвенного профиля метанолом (до 100 см), его слой полностью экскавируют и складируют в виде бурта на специально подготовленную площадку с водонепроницаемым основанием и системой перфорированных труб, проходящих через толщу бурта и обеспечивающих интенсивную аэрацию с помощью компрессоров. Бурт обрабатывают биопрепаратом, периодически подвергают рыхлению и после очистки экскавированный слой возвращают на место выемки. Для очистки нижних слоев почвенного профиля прокладывают скважины на всю глубину загрязнения вплоть до зеркала грунтовых вод, в которые через перфорированные трубы прокачивают суспензию биопрепарата и воздух.
1. Российская газовая энциклопедия. М.: Большая Российская энциклопедия, 2004. 527 с.
2. Истомин В.А., Минигулов Р.М., Грицишин Д.Н., Квон В.Г. Технологии предупреждения гидратообразования в промысловых системах: проблемы и перспективы // Газохимия. 2009. № 6. С. 32-40.
3. Грунвальд А.В. Рост потребления метанола в газовой промышленности России и геоэкологические риски, возникающие при его использовании в качестве ингибитора гидратообразования // Нефтегазовое дело. 2007. 25 с.
4. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в марте 2014 г. // Метеорология и гидрология. 2014. № 6. С. 103-110.
5. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в июле 2016 г. // Метеорология и гидрология. 2016. № 10. С. 103-110.
6. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в июне 2016 г. // Метеорология и гидрология. 2016. № 9. С. 97-104.
7. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в мае 2016 г. // Метеорология и гидрология. 2016. № 8. С. 100-106.
8. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в августе 2016 г. // Метеорология и гидрология. 2016. № 11. С. 96-103.
9. Эльпинер Л.И. Современные медико-экологические аспекты учения о подземных водах // Гигиена и санитария. 2015. № 6. C. 39-46.
10. Унгуряну Т.Н. Риск для здоровья населения при комплексном действии веществ, загрязняющих питьевую воду // Экология человека. 2011. № 3. С. 14-20.
11. Юнусов Р.Р., Шевкунов С.Н., Дедовец С.А., Ушаков С.Н., Лятс К.Г., Самойлов А.П. Малотоннажные установки по производству метанола в газодобывающих районах Крайнего Севера // Газохимия. 2008. № 1. С. 58-61.
13. Ладыгин К.В., Цукерман М.Я., Стомпель С.И. Метанол в газодобыче: снижение экологических рисков // Экология производства. 2014. № 4. С. 47-49.
14. Андреев О.П., Башкин В.Н., Галиулин Р.В., Арабский А.К., Маклюк О.В. Решение проблемы геоэкологических рисков в газовой промышленности. Обзорная информация. М.: Газпром ВНИИГАЗ, 2011. 78 с.
15. Малютина Н.Н., Тараненко Л.А. Патофизиологические и клинические аспекты воздействия метанола и формальдегида на организм человека // Современные проблемы науки и образования. 2014. № 2. 11 с.
16. Бойко О.В., Ахминеева А.Х., Бойко В.И., Гудинская Н.И. Влияние Астраханского газоперерабатывающего завода на загрязнение воздуха производственных помещений и территории // Гигиена и санитария. 2016. № 2. С. 167-171.
17. Тараненко Н.А., Мещакова Н.М. Санитарно-гигиенические аспекты мониторинга за состоянием воздуха рабочей зоны химических производств по получению метанола и метиламинов // Международный журнал прикладных и фундаментальных исследований. 2015. № 8. С. 812-815.
18. Акопова Г.С., Ильченко В.П., Попадько Н.В. Производственные сточные воды газовой отрасли: источники образования, состав, очистка и утилизация // Газовая промышленность. 2003. № 6. С. 76-78.
19. Абуталиева И.Р., Исакова В.В. Освоение газоконденсатных месторождений как фактор изменения геосистем Астраханского Прикаспия // Вестник Астраханского государственного технического университета. 2010. № 2. С. 7-12.
20. Пухлий В.А., Журавлев А.А., Померанская А.К., Пухлий П.В. Очистка сточных вод от метанола и ацетона // Энергетические установки и технологии. 2016. Т. 2. № 2. С. 68-77.
22. Бренчугина М.В., Буйновский А.С., Исмагилов З.Р., Кузнецов В.В. Разработка технологии очистки производственных вод газоконденсатных месторождений от метанола // Известия Томского политехнического университета. 2007. Т. 311. № 3. С. 64-68.
23. Шаркина В.И., Серегина Л.К., Щанкина В.Г., Фалькевич Г.С., Ростанин Н.Н. Очистка водометанольной фракции от метанола на промышленном катализаторе НТК-4 // Катализ в промышленности. 2012. № 1. С. 61-64.
24. Мурзаков Б.Г., Акопова Г.С., Маркина П.А. Очистка метанолсодержащих вод с помощью биологических препаратов // Газовая промышленность. 2005. № 12. С. 58-60.
25. Мурзаков Б.Г., Акопова Г.С., Маркина П.А. Выделение метилотрофных бактерий из микробиоценоза метанолсодержащих вод // Газовая промышленность. 2006. № 3. С. 83-85.
Announcement in English
The geoecology of methanol used in the gas industry as hydrate formation inhibitor is considered. Examples are given and risks of environmental pollution by methanol, and also its toxic action on the human are described. Hygienic standards of methanol for control of environmental pollution by him are presented. Various methods of utilization and cleaning of sewage and soils contained methanol (burning, burial, rectification, ultra-violet irradiation, catalytic and microbiological influence) as a solution of the problem of environmental pollution risk by this substance are characterized.
Автор: Р.В. Галиулин, Р.А. Галиулина, В.Н. Башкин,