мембрана служит для чего

Клеточная мембрана

мембрана служит для чего. Смотреть фото мембрана служит для чего. Смотреть картинку мембрана служит для чего. Картинка про мембрана служит для чего. Фото мембрана служит для чего

Все живые организмы на Земле состоят из клеток, а каждая клетка окружена защитной оболочкой – мембраной. Однако функции мембраны не ограничиваются защитой органоидов и отделением одной клетки от другой. Клеточная мембрана представляет собой сложнейший механизм, напрямую участвующий в размножении, регенерации, питании, дыхании и многих других важных функциях клетки.

Термин «клеточная мембрана» используется уже около ста лет. Само слово «мембрана» в переводе с латыни означает «пленка». Но в случае в клеточной мембраной правильнее будет говорить и совокупности двух пленок, соединенных между собой определенным образом, причем, разные стороны этих пленок обладают разными свойствами.

Клеточная мембрана (цитолемма, плазмалемма) – это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой.

Решающее значение в этом определении имеет не то, что клеточная оболочка отделяет одну клетку от другой, а то, что она обеспечивает её взаимодействие другими клетками и окружающей средой. Мембрана – весьма активная, постоянно работающая структура клетки, на которую природой возложено множество функций. Из нашей статьи вы узнаете все о составе, строении, свойствах и функциях клеточной мембраны, а также о той опасности, которую представляют для здоровья человека нарушения в работе клеточных мембран.

История исследования клеточной мембраны

В 1925 году двое немецких ученых, Гортер и Грендель, смогли провести сложнейший эксперимент над красными кровяными тельцами человеческой крови, эритроцитами. С помощью осмотического удара исследователи получили так называемые «тени»– пустые оболочки эритроцитов, затем сложили их в одну стопку и измерили площадь поверхности. Следующим шагом стало вычисление количества липидов в клеточной мембране. С помощью ацетона ученые выделили липиды из «теней» и определили, что их как раз хватает на двойной сплошной слой.

Однако в ходе эксперимента было допущено две грубейших ошибки:

Использование ацетона не позволяет выделить из мембран абсолютно все липиды;

Площадь поверхности «теней» была высчитана по сухому весу, что тоже неправильно.

Поскольку первая ошибка давала минус в расчетах, а вторая – плюс, общий результат оказался на удивление точным, и немецкие ученые принесли в научный мир важнейшее открытие – липидный бислой клеточной мембраны.

В 1935 году другая пара исследователей, Даниэлли и Доусон, после долгих экспериментов над билипидными пленками пришли к выводу о присутствии в клеточных мембранах белков. Иначе никак нельзя было объяснить, почему эти пленки обладают таким высоким показателем поверхностного натяжения. Ученые представили вниманию общественности схематическую модель клеточной мембраны, похожую на сэндвич, где роль кусочков хлеба играют однородные липидно-белковые слои, а между ними вместо масла – пустота.

В 1950 году с помощью первого электронного микроскопа теорию Даниэлли-Доусона удалось частично подтвердить – на микрофотографиях клеточной мембраны были отчетливо видны два слоя, состоящих из липидных и белковых головок, а между ними прозрачное пространство, заполненное лишь хвостиками липидов и белков.

В 1972 году микробиологи С.Д. Сингер и Г.Л. Николсон смогли объяснить все нестыковки теории Робертсона с помощью новой, жидкостно-мозаичной модели клеточной мембраны. Ученые установили, что мембрана неоднородна, ассиметрична, наполнена жидкостью, и её клетки пребывают в постоянном движении. А белки, входящие в её состав, имеют разное строение и назначение, кроме того, они по-разному располагаются относительно билипидного слоя мембраны.

В составе клеточных мембран присутствуют белки трех видов:

Периферические – крепятся на поверхности пленки;

Полуинтегральные – частично проникают внутрь билипидного слоя;

Интегральные – полностью пронизывают мембрану.

Периферические белки связаны с головками мембранных липидов посредством электростатического взаимодействия, и они никогда не образуют сплошной слой, как принято было считать ранее.А полуинтегральные и интегральные белки служат для транспортировки внутрь клетки кислорода и питательных веществ, а также для вывода из нее продуктов распада и ещё для нескольких важных функций, о которых вы узнаете далее.

Свойства и функции клеточной мембраны

мембрана служит для чего. Смотреть фото мембрана служит для чего. Смотреть картинку мембрана служит для чего. Картинка про мембрана служит для чего. Фото мембрана служит для чего

Клеточная мембрана выполняет следующие функции:

Барьерную – проницаемость мембраны для разных типов молекул неодинакова.Чтобы миновать оболочку клетки, молекула должна иметь определенный размер, химические свойства и электрический заряд. Вредные или неподходящие молекулы, благодаря барьерной функции клеточной мембраны, просто не могут проникнуть внутрь клетки. Например, с помощью реакции пероксиса мембрана защищает цитоплазму от опасных для нее пероксидов;

Транспортную – сквозь мембрану проходит пассивный, активный, регулируемый и избирательный обмен. Пассивный обмен подходит для жирорастворимых веществ и газов, состоящих из очень маленьких молекул. Такие вещества проникают внутрь и выходят из клетки без затрат энергии, свободно, методом диффузии. Активная транспортная функция клеточной мембраны задействуется тогда, когда в клетку или из нее нужно провести необходимые, но трудно транспортируемые вещества. Например, обладающие большим размером молекул, или неспособные пересечь билипидный слой из-за гидрофобности. Тогда начинают работать белки-насосы, в том числе АТФаза, которая отвечает за всасывание в клетку ионов калия и выбрасывание из нее ионов натрия. Регулируемый транспортный обмен необходим для осуществления функций секреции и ферментации, например, когда клетки производят и выделяют гормоны или желудочный сок. Все эти вещества выходят из клеток через специальные каналы и в заданном объеме. А избирательная транспортная функция связана с теми самыми интегральными белками, которые пронизывают мембрану и служат каналом для входа и выхода строго определенных типов молекул;

Матричную – клеточная мембрана определяет и фиксирует расположение органоидов относительно друг друга (ядра, митохондрий, хлоропластов) и регулирует взаимодействие между ними;

Механическую – обеспечивает ограничение одной клетки от другой, и, в то же время,— правильное соединение клеток в однородную ткань и устойчивость органов к деформации;

Защитную – как у растений, так и у животных, клеточная мембрана служит основой для построения защитного каркаса. Примером могут служить твердая древесина, плотная кожура, колючие шипы. В животном мире тоже много примеров защитной функции клеточных мембран – черепаший панцирь, хитиновая оболочка, копыта и рога;

Энергетическую — процессы фотосинтеза и клеточного дыхания были бы невозможны без участия белков клеточной мембраны, ведь именно с помощью белковых каналов клетки обмениваются энергией;

Рецепторную — белки, встроенные в клеточную мембрану, могут обладать ещё одной важной функцией. Они служат рецепторами, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. А это, в свою очередь, необходимо для проведения нервных импульсов и нормального течения гормональных процессов;

Ферментативную — ещё одна важная функция, присущая некоторым белкам клеточных мембран. Например, в эпителии кишечника с помощью таких белков синтезируются пищеварительные ферменты;

Биопотенциальную – концентрация ионов калия внутри клетки значительно выше, чем снаружи, а концентрация ионов натрия, наоборот, снаружи больше, чем внутри. Этим и объясняется разность потенциалов: внутри клетки заряд отрицательный, в снаружи положительный, что способствует движению веществ внутрь клетки и наружу при любом из трех типов обмена – фагоцитозе, пиноцитозе и экзоцитозе;

Клеточный обмен происходит через мембраны, и может осуществляться с помощью трех основных типов реакций:

Фагоцитоз – клеточный процесс, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают твердые частички питательных веществ. В человеческом организме фагоцитоз осуществляется мембранами двух типов клеток: гранулоцитов (зернистых лейкоцитов) и макрофагов (иммунных клеток-убийц);

Экзоцитоз – обратный процесс, при котором внутри клетки образуются пузырьки с секреторной функциональной жидкостью (ферментом, гормоном), и её необходимо как-то вывести из клетки в окружающую среду. Для этого пузырек сначала сливается с внутренней поверхностью клеточной мембраны, затем выпячивается наружу, лопается, исторгает содержимое и снова сливается с поверхностью мембраны, на этот раз уже с внешней стороны. Экзоцитоз проходит, например, в клетках кишечного эпителия и коры надпочечников.

Строение клеточной мембраны

мембрана служит для чего. Смотреть фото мембрана служит для чего. Смотреть картинку мембрана служит для чего. Картинка про мембрана служит для чего. Фото мембрана служит для чего

Клеточные мембраны содержат липиды трех классов:

Фосфолипиды (комбинация жиров и фосфора) и гликолипиды (комбинация жиров и углеводов), в свою очередь, состоят из гидрофильной головки, от которой отходят два длинных гидрофобных хвостика. А вот холестерол иногда занимает пространство между этими двумя хвостиками и не даёт им изгибаться, что делает мембраны некоторых клеток жесткими. Кроме того, молекулы холестерола упорядочивают структуру клеточных мембран и препятствуют переходу полярных молекул из одной клетки в другую.

Но самой важной составляющей, как видно из предыдущего раздела о функциях клеточных мембран, являются белки. Их состав, назначение и расположение весьма разнообразны, но есть нечто общее, что всех их объединяет: вокруг белков клеточных мембран всегда расположены аннулярные липиды. Это особые жиры, которые четко структурированы, устойчивы, имеют в своем составе больше насыщенных жирных кислот, и выделяются из мембран вместе с «подшефными» белками. Это своего рода персональная защитная оболочка для белков, без которой они бы просто не работали.

Структура клеточной мембраны трехслойна. Посередине пролегает относительно однородный жидкий билипидный слой, а белки покрывают его с обеих сторон подобием мозаики, частично проникая в толщу. То есть, неправильно было бы думать, что внешние белковые слои клеточных мембран непрерывны. Белки, помимо своих сложных функций, нужны в мембране для того, чтобы пропускать внутрь клеток и транспортировать из них наружу те вещества, которые не способны проникнуть сквозь жировой слой. К примеру, ионы калия и натрия. Для них предусмотрены специальные белковые структуры – ионные каналы, подробнее о которых мы расскажем далее.

Если взглянуть на клеточную мембрану через микроскоп, то можно увидеть слой липидов, образованный мельчайшими шарообразными молекулами, по которому, как по морю, плавают большие белковые клетки разной формы. Точно такие же мембраны делят внутреннее пространство каждой клетки на отсеки, в которых уютно располагаются ядро, хлоропласты и митохондрии. Не будь внутри клетки отдельных «комнат», органоиды бы слиплись друг с другом и не смогли бы выполнять свои функции правильно.

Клетка – это структурированная и отграниченная с помощью мембран совокупность органоидов, которая участвует в комплексе энергетических, метаболических, информационных и репродуктивных процессов, обеспечивающих жизнедеятельность организма.

Как видно из этого определения, мембрана является важнейшей функциональной составляющей любой клетки. Её значение так же велико, как значение ядра, митохондрий и прочих клеточных органелл. А уникальные свойства мембраны обусловлены её строением: она состоит из двух плёночек, слепленных друг с другом особым образом. Молекулы фосфолипидов в мембране расположены гидрофильными головками наружу, а гидрофобными хвостами внутрь. Поэтому одна сторона плёночки смачивается водой, а другая – нет. Так вот, эти плёночки соединяются друг с другом несмачиваемыми сторонами внутрь, образуя билипидный слой, окруженный молекулами белков. Это и есть то самое «бутербродное» строение клеточной мембраны.

Ионные каналы клеточных мембран

Рассмотрим более подробно принцип работы ионных каналов. Для чего они нужны? Дело в том, что сквозь липидную мембрану беспрепятственно могут проникать только жирорастворимые вещества – это газы, спирты и сами жиры. Так, например, в красных кровяных тельцах постоянно происходит обмен кислорода и углекислого газа, и для этого нашему организму не приходится прибегать ни к каким дополнительным ухищрениям. Но как же быть, когда возникает необходимость в транспортировке сквозь клеточную мембрану водных растворов, таких, как соли натрия и калия?

Проложить в билипидном слое путь для таких веществ было бы невозможно, поскольку отверстия бы тут же затянулись и слиплись обратно, такова уж структура любой жировой ткани. Но природа, как всегда, нашла выход из ситуации, и создала специальные белковые транспортные структуры.

Существует два типа проводящих белков:

Транспортеры – полуинтегральные белки-насосы;

Каналоформеры – интегральные белки.

Белки первого типа частично погружены в билипидный слой клеточной мембраны, а головкой выглядывают наружу, и в присутствии нужного вещества они начинают вести себя, как насос: притягивают молекулу и всасывают её внутрь клетки. А белки второго типа, интегральные, имеют вытянутую форму и располагаются перпендикулярно билипидному слою клеточной мембраны, пронизывая её насквозь. По ним, как по тоннелям, в клетку и из клетки движутся вещества, неспособные проходить сквозь жир. Именно через ионные каналы внутрь клетки проникают ионы калия и накапливаются в ней, а ионы натрия, наоборот, выводятся наружу. Возникает разность электрических потенциалов, так необходимая для правильной работы всех клеток нашего организма.

Важнейшие выводы о строении и функциях клеточных мембран

мембрана служит для чего. Смотреть фото мембрана служит для чего. Смотреть картинку мембрана служит для чего. Картинка про мембрана служит для чего. Фото мембрана служит для чего

Теория всегда выглядит интересной и перспективной, если её можно с пользой применить на практике. Открытие строения и функций клеточных мембран человеческого организма позволило ученымсовершить настоящий прорыв в науке в целом, и в медицине в частности. Мы не случайно так подробно остановились на ионных каналах, ведь именно здесь кроется ответ на один из важнейших вопросов современности: почему люди все чаще заболевают онкологией?

Рак ежегодно уносит около 17 миллионов жизней во всем мире, и является четвертой по частоте причиной всех смертей. По данным ВОЗ, заболеваемость онкологией неуклонно увеличивается, и к концу 2020 года может достигнуть 25 миллионов в год.

Чем объясняется настоящая эпидемия рака, и причем тут функции клеточных мембран? Вы скажете: причина в плохой экологической обстановке, неправильном питании, вредных привычках и тяжелой наследственности. И, конечно, будете правы, но если говорить о проблеме более предметно, то причина в закисленности человеческого организма. Перечисленные выше негативные факторы приводят к нарушению работы клеточных мембран, угнетают дыхание и питание.

Там, где должен быть плюс, образуется минус, и клетка не может нормально функционировать. А вот раковым клеткам не нужны ни кислород, ни щелочная среда – они способны использовать анаэробный тип питания. Поэтому в условиях кислородного голодания и зашкаливающего уровня pH здоровые клетки мутируют, желая приспособиться к окружающей среде, и становятся раковыми клетками. Так человек и заболевает онкологией. Чтобы этого избежать, нужно всего лишь употреблять достаточное количество чистой воды ежедневно, и отказаться от канцерогенов в пище. Но, как правило, люди прекрасно знают о вредных продуктах и потребности в качественной воде, и ничего не предпринимают – надеются, что беда обойдет их стороной.

Зная особенности строения и функций клеточных мембран разных клеток, врачи могут использовать эти сведения для оказания направленного, адресноготерапевтического воздействия на организм. Многие современные лекарственные препараты, попадая в наше тело, ищут нужную «мишень», в качестве которой могут выступать ионные каналы, ферменты, рецепторы и биомаркеры клеточных мембран. Такой способ лечения позволяет добиться более высоких результатов при минимальных побочных эффектах.

Антибиотики последнего поколения при попадании в кровь не убивают все клетки подряд, а ищут именно клетки возбудителя, ориентируясь на маркеры в его клеточных оболочках. Новейшие препараты против мигрени, триптаны, сужают только воспаленные сосуды головного мозга, при этом почти никак не влияя на сердце и периферическую кровеносную систему. И узнают они нужные сосуды именно по белкам их клеточных мембран. Таких примеров множество, поэтому можно с уверенностью сказать, что знания о строении и функциях клеточных оболочек лежит в основе развития современной медицинской науки, и спасает миллионы жизней каждый год.

мембрана служит для чего. Смотреть фото мембрана служит для чего. Смотреть картинку мембрана служит для чего. Картинка про мембрана служит для чего. Фото мембрана служит для чего

Источник

Мембрана: что это такое и как работает?

Современная верхняя одежда, ориентированная на неблагоприятные погодные условия, разрабатывается из высокотехнологичных синтетических материалов – легких, практичных и износостойких. Для приверженцев спорта и любителей активного отдыха куртки из мембранной ткани стали настоящей находкой. Изделия обладают уникальными характеристиками, отличаются малым весом и существенно облегчают экипировку.

мембрана служит для чего. Смотреть фото мембрана служит для чего. Смотреть картинку мембрана служит для чего. Картинка про мембрана служит для чего. Фото мембрана служит для чего

Но чтобы купить мембранную одежду, вовсе не обязательно быть путешественником, альпинистом или профессиональным спортсменом: она становится все более популярной и в городской жизни. Функциональная одежда идеально подходит для легких пробежек, рыбалки, вылазок на природу и повседневного ношения в дождливую, ветреную, ненастную погоду. Компактные мембранные куртки мужские, женские мембранные ветровки и детские – решение для людей, которые не отказываются от прогулок и уличных развлечений, несмотря на осадки и порывистый ветер.

Водоотталкивающая, ветрозащитная, воздухопроницаемая мембрана действительно незаменима в гардеробе каждого человека: она позволяет чувствовать себя комфортно в любую непогоду. Стильный дизайн одежды подчеркнет индивидуальность, придаст образу модный спортивный вид.

Что такое мембрана?

мембрана служит для чего. Смотреть фото мембрана служит для чего. Смотреть картинку мембрана служит для чего. Картинка про мембрана служит для чего. Фото мембрана служит для чего

Термин «мембрана» широко используется в науке и технике. Это своеобразный барьер, пропускающий через себя одни вещества и останавливающий другие. Специальные материалы с таким названием применяются и в одежде. Впервые свойства мембран использовали в компании Gore в 1970-ых годах: технологи разработали уникальный для того времени продукт Gore-tex, который позволил человеку легко противостоять практически всем капризам погоды и регулировать теплоотдачу даже при высокой физической активности. С него и началась эра революционных материалов, перевернувших представление об одежде, обуви и аксессуарах для туризма и спорта, а затем и для города.

Почему именно мембрана стала настоящим прорывом в легкой промышленности? Главной функцией верхней одежды была и остается защита от неблагоприятных факторов внешней среды. Раньше для этих целей повсеместно использовали только резиновую обувь, полиэтиленовые плащи и брезентовые дождевики. Полностью непромокаемые изделия действительно исключали попадание влаги извне. Но находиться в них долгое время было невозможно: дышащие свойства таких материалов равны нулю. Пот, не имея выхода наружу, накапливался на теле и увлажнял одежду, создавая серьезный дискомфорт, особенно при высокой активности.

Сегодня практически вся экипировка для outdoor-индустрии оснащена мембраной – «дышащим» и водостойким материалом на основе гидрофобных полимеров. Это классическое решение для внешнего слоя, защищающее от дождя, холодного ветра и не создающее парникового эффекта.

Свойства мембраны

Мембрана – это синтетический материал, в структуре которого имеется множество микропор, обладающих избирательной проницаемостью. Тонкая ткань отводит водяные пары наружу, но задерживает проникновение жидкости в обратном направлении – из внешней среды. Благодаря тонковолокнистой структуре материала холодный воздух образует завихрения и удерживается в лабиринте микропор. Непродуваемость мембраны снижает конвективные потери тепла, которые неизбежны при низких температурах или ветре. Однако рассматривать ее как теплоизолятор не стоит: мембрана препятствует потере нагретого воздуха, но он все равно будет охлаждаться за счет отвода испарений. Ключевое значение для создания комфортного микроклимата имеет правильная комбинация слоев одежды под мембранной курткой.

мембрана служит для чего. Смотреть фото мембрана служит для чего. Смотреть картинку мембрана служит для чего. Картинка про мембрана служит для чего. Фото мембрана служит для чего

Таким образом, мембрана непроницаема для сырости, влаги и ветра и при этом отводит испарения тела наружу даже при высоких физических нагрузках. Это существенное отличие от классических прорезиненных дождевиков и штормовок – мембранные ветровки так же эффективно защищают от ветра, дождя, сохраняют тепло и при этом позволяют коже дышать. Тело остается сухим, а человек чувствует себя комфортно в любую погоду.

Особенности выбора

Мембранная одежда выпускается для всех видов активного отдыха – альпинизма, туризма, бега, горных лыж, и представлена в разных ценовых категориях. Мембраны используются самостоятельно, могут быть двух-, трехслойными либо иметь промежуточную конструкцию. Способ интеграции мембраны в изделие зависит от назначения и условий его использования.

Важнейшие показатели мембранного материала – это водонепроницаемость, паропроницаемость и вес.

мембрана служит для чего. Смотреть фото мембрана служит для чего. Смотреть картинку мембрана служит для чего. Картинка про мембрана служит для чего. Фото мембрана служит для чего

Самыми универсальными и востребованными являются легкие водонепроницаемые куртки, предназначенные для широкого спектра активности. Компактная непромокаемая ветровка незаменима в гардеробе взрослого и ребенка. Нет ничего более практичного для коротких путешествий, походов, рыбалки и охоты, в том числе «тихой», занятий спортом. Она пригодится и в городе для прогулок в пасмурную и переменчивую погоду – можно забыть про зонт и не откладывать свои планы из-за внезапного дождя. В упакованном виде непромокаемая ветровка занимает минимум места и легко помещается в рюкзак, сумку или багаж. Изделие быстро сохнет даже при полном намокании, что очень выручает в дороге.

Мембранные ветровки Norveg: минимум веса, максимум практичности

Технологи компании Norveg разработали концептуально новый продукт – практичные, непродуваемые и непромокаемые мембранные ветровки для межсезонья и лета. Легкие куртки обеспечивают комфорт в дождливую, ветреную погоду. Благодаря высоким характеристикам водонепроницаемости − до 7000 mm и паропроницаемости − до 7000 gsm мембраны Norveg легко выдерживают длительные осадки и дарят комфорт при низкой и средней степени физической активности. Модели для взрослых и детей представлены в широком размерном ряду.

Особенности водонепроницаемых курток Norveg.

мембрана служит для чего. Смотреть фото мембрана служит для чего. Смотреть картинку мембрана служит для чего. Картинка про мембрана служит для чего. Фото мембрана служит для чего

Свободный крой обеспечивает аккуратную посадку изделия по фигуре без ограничения движений. Предусматриваются первый и промежуточный слои одежды, которые подбираются в зависимости от погоды. Так, в прохладные осенние дни это может быть термобелье с флисовой поддевкой, а пасмурным летом – футболка с длинным или коротким рукавом. Такая особенность позволяет использовать куртку в широком диапазоне температур.

Также в линейке представлены складные мембранные рюкзаки Norveg, выполненные в одинаковой цветовой гамме с водонепроницаемыми куртками и идеально их дополняющие.

Рюкзаки универсальны – подходят для взрослых и детей, пригодятся в походах, путешествиях, вылазках на природу и в повседневной жизни. Благодаря хорошей вместительности (17 л) и прочности рюкзак можно использовать в качестве шопера. Водостойкая мембрана сохранит сухость вещей в течение долгого времени даже в моросящий дождь. Рюкзак, как и куртка, складывается в компактный чехол.

Особенности ухода за мембраной

мембрана служит для чего. Смотреть фото мембрана служит для чего. Смотреть картинку мембрана служит для чего. Картинка про мембрана служит для чего. Фото мембрана служит для чего

Изделия из мембраны отличаются износостойкостью – при правильном уходе сохраняют форму, яркость цвета и функциональные свойства долгое время.

Ухаживать за мембранными ветровками нужно, но важно делать это правильно. Со временем на поверхности мембраны появляются грязевые отложения, которые закупоривают поры и ухудшают уникальные свойства материала. Забивать поры может и неправильно подобранное моющее средство.

Небольшие загрязнения легко удаляются с поверхности куртки влажной губкой.

При разработке новой линейки мембранных курток и рюкзаков сделан акцент на легкость, технологичность и удобство. Тонкие, компактные, практически невесомые изделия при этом являются практичными, износостойкими и долговечными. Куда бы вы ни отправились – на прогулку, тренировку или в путешествие, всегда пригодится функциональный верхний слой – непромокаемая ветровка, а также прочный, вместительный рюкзак от Norveg. Забудьте о громоздких штормовках и зонтах, наслаждайтесь свежим воздухом, несмотря на непогоду!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *