мелатонин гормон чего простыми словами
Мелатонин, что это такое? В первую очередь – это гормон, вырабатываемый эпифизом, который также называют гормоном сна. Пиковая эффективность его выработки приходится на период между полуночью и пятью часами утра, когда производится порядка семидесяти процентов суточной нормы гормона. К чему же приводит недостаточное содержание мелатонина в организме человека? Увы, в результате подобного явления придётся столкнуться с рядом нехороших эффектов.
Мелатонин что это и для чего он нужен
Гормон мелатонин играет важнейшую роль в обеспечении полноценного функционирования ряда систем организма, а также оказывает массу положительных эффектов:
Мелатонин в таблетках
Не сегодняшний день существует большое количество медицинских препаратов, содержащих гормон мелатонин, что это за продукты и как их принимать мы рассмотрим ниже. В первую очередь такие препараты, как Мелаксен и его аналоги применяются в качестве эффективных снотворных средств. Их употребление показано в случае нарушения сна, снижении его качества, а также для облегчения восстановления режима при смене часовых поясов. Употребление 3 мг. мелатонина на ночь способно нормализовать его содержание в организме, оказывая благотворное воздействие на весь организм. Отличным примером такого средства является NOW Melatonin 3 мг. (180 капс.). В случаях, когда нужен более сильный разовый эффект могут применяться препараты с содержанием мелатонина, повышенным до 5 мг. или даже больше. В том числе встречаются препараты, обеспечивающее долговременную поставку гормона в организм, такие как Natrol Melatonin Advanced Sleep 10 мг (60 табл. медленного высвобождения). Препараты с мелатонином сегодня продаются повсеместно и без рецепта, однако рекомендуется предварительно посоветоваться с врачом, так как в некоторых случаях могут возникнуть побочные эффекты.
Видео: Что такое мелатонин
Мелатонин и COVID-19
Мелатонин долгое время называли гормоном сна, его действие связывали исключительно с управлением суточными ритмами человека. Последние исследования доказали: у этого активного химического соединения более широкий функционал.
Мелатонин – древнее вещество
Учёные считают, что мелатонин появился на Земле 3,5 миллиарда лет назад, потому что обнаружили его в составе древнейших цианобактерий. Сегодня известно, что большинство живых организмов, как животных, так и растительных, синтезируют мелатонин.
Обнаружение мелатонина
В 1958 году команде профессора дерматологии из Йельского университета США Аарона Лернера удалось выделить из эпифизов коров новое соединение, которое при введении в кожу головастика, осветляло её. Вещество блокировало выработку меланоцитостимулирующего гормона, поэтому получило название «мелатонин».
Позже обнаружили, что открытое соединение синтезируется в организме преимущественно ночью. Это связали с суточными периодами покоя и бодрствования, и два десятилетия мелатонин считался только гормоном сна, регулирующим циркадные ритмы человека.
Выработка мелатонина
80% мелатонина вырабатывается эпифизом – шишковидной железой весом 100–125 мг, расположенной в головном мозге. Остальные 20% мелатонина вырабатывают особые клетки:
Такой, «периферический», мелатонин не воздействует на суточные ритмы, работая исключительно на местном уровне.
Действие мелатонина
«Гормон сна» начинает вырабатываться в промежутке от 20 до 22 часов (у «жаворонков» раньше, у «сов» – позже). Концентрация мелатонина достигает пика с полуночи до двух часов ночи, а к шести-семи часам утра падает до минимального уровня.
Как работает мелатонин
Применение синтетических аналогов мелатонина в медицине
Чаще всего препараты мелатонина используют для лечения различных нарушений сна. Проведённые исследования доказывают эффективность мелатонина при острой бессоннице: уменьшается время засыпания, улучшается качество ночного сна и его продолжительность.
Приём мелатонина оправдан при хронобиологических нарушениях, когда человек часто меняет часовые пояса или работает по сменному графику с чередованием ночных и дневных смен.
Препараты «гормона сна» нельзя применять как привычное снотворное средство. Они помогают только при сбоях, обусловленных снижением продукции мелатонина. В других случаях эффекта не будет.
Мелатонин не назначают при:
БАД или лекарство?
До сих пор среди врачей нет единого мнения: считать мелатонин лекарством или биологически активной добавкой (БАД).
В США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) не одобрило его для использования в медицинских целях, поэтому там мелатонин продаётся без рецепта, как пищевая добавка.
В странах Евросоюза и в Австралии мелатонин считается лекарством, продаётся по рецепту и используется для лечения бессонницы у детей, подростков и лиц, старше 55 лет.
В России зарегистрированы лекарственные формы препарата и БАДы, приобрести их можно в аптеках и магазинах спортивного питания без рецепта.
Мелатонин применяется в качестве вспомогательной терапии при:
Мелатонин и COVID-19
Пандемия COVID-19, вызванная вирусом SARS-CoV-2, заставила учёных активно изучать влияние мелатонина на течение этого заболевания. В результате привычный «регулятор сна» стал использоваться в комплексе средств вспомогательной терапии COVID-19. Осенью 2020 года его даже применяли для лечения президента США Дональда Трампа.
США. Электронная научная библиотека medRxiv в октябре 2020 года разместила отчёт о научно-исследовательской работе, в которой было изучено 800 случаев заболевания тяжёлой формой COVID-19. Выяснилось, что пациенты, изначально имевшие высокий уровень собственного мелатонина, и те, кто получал гормон в виде лекарственного препарата, достоверно чаще выживали в реанимации. Мелатонин повышал шансы на выздоровление, как при коронавирусной, так и любой другой инфекции, поражающей лёгкие.
Канада и Аргентина. Работа опубликована в журнале Diseases в ноябре 2020 года. Совместное исследование Университета Торонто и Папского католического университета показало, что заболевание у пожилых людей может протекать тяжелее в связи со сниженным содержанием мелатонина. Мелатонин в адекватных дозах предотвращает развитие агрессивной формы COVID-19, а также поддерживает действие антикоронавирусной вакцины.
Чтобы попасть в организм человека, вирусы SARS-CoV-2 должны связаться с рецепторами ангиотензин-превращающего фермента 2 (ACE2), расположенными на поверхности клеток легких. Только соединившись с ACE2, коронавирусы проникают в клетку и начинают размножаться, приводя к болезни.
Мелатонин снижает количество свободных рецепторов ACE2, в результате количество связей вируса с ферментом снижается, что приводит к поражению минимального количества клеток, а значит коронавирусная инфекция будет протекать в лёгкой форме.
Дополнительно мелатонин уменьшает воспалительную реакцию в месте проникновения вируса и контролирует иммунный ответ, не давая развиться «цитокиновому шторму». А так как именно бурная цитокиновая реакция и приводит к фатальному результату, её подавление повышает шансы пациента выжить и избежать серьёзных осложнений.
В нашей стране пока не накоплен достаточный научный опыт, подтверждающий тот факт, что мелатонин предотвращает тяжёлое течение COVID-19, да и механизм действия мелатонина на организм человека ещё недостаточно изучен. Однако эмпирический опыт даёт обнадёживающие результаты и свидетельствует в пользу положительного влияния мелатонина на исход COVID-19.
Препараты мелатонина отпускаются в России без рецепта, но не стоит принимать их без очной консультации с доктором ни для коррекции нарушений сна, ни для профилактики или лечения COVID-19.
Снова о циркадных ритмах
Научные данные указывают на то, что распорядок дня, согласованный с циркадными ритмами, — это важный аспект здоровой жизни.
Авторы
Редакторы
Статья на конкурс «Био/Мол/Текст»: Современный человек окружен множеством соблазнов, мешающих ему вовремя лечь спать: полистать инстаграм, посмотреть новый эпизод любимого сериала, поработать, когда все домашние наконец-то спят, сходить в клуб (если пандемия не вносит свои коррективы). Однако сейчас уже не только бабушка, но и ученые говорят о том, что всему свое время. Мы живем на планете Земля, которая вращается и создает для всех нас циркадный ритм. Ученые крайне заинтересованы в его изучении. В исследовании циркадных ритмов живых организмов можно выделить два основных направления: 1) Механизмы клеточных часов — за их открытие уже присудили в 2017 году Нобелевскую премию. 2) Работа вестника ночи — мелатонина, в исследовании которого остается много белых пятен (об этом и поговорим подробно в этой статье).
Конкурс «Био/Мол/Текст»-2020/2021
Эта работа опубликована в номинации «Свободная тема» конкурса «Био/Мол/Текст»-2020/2021.
Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.
Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.
Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Клеточные часы — Нобелевская премия 2017
Хронобиология — наука, изучающая биологические ритмы, — выделяет дневные, приливные, недельные, сезонные и годовые ритмы. В этой статье мы затронем вопросы, связанные с циркадными (от лат. circa — «около, кругом» + dies — «день») ритмами. Циркадные ритмы возникли в результате ежедневных изменений освещенности, вызванных вращением Земли. Циркадные ритмы есть у цианобактерий, грибов, растений и животных. У человека можно наблюдать суточные изменения физиологических параметров: температуры тела, синтеза гормонов (например, кортизола) и ферментов, циклы сна и бодрствования [1], [2].
К середине ХХ века было накоплено уже много данных о циркадных ритмах, и поэтому темой ежегодного симпозиума по количественной биологии в Колд Спринг Харбор в 1960 году стали «Биологические часы». В следующие десятилетия случились главные события в исследовании молекулярных основ циркадных ритмов, за что в 2017 году Джеффри Холл, Майкл Росбаш и Майкл Янг были удостоены Нобелевской премии по физиологии и медицине [3].
На модели плодовой мушки ученые показали, что существуют гены, то есть физические носители информации, имеющие влияние не просто на признак (как, например, цвет человеческих глаз или окраска цветков фасоли), а на поведение целого организма — когда ложиться спать; сколько секунд петь брачную песню. Они выделили эти гены (per, tim, dbt) и научились вносить в них изменения, тем самым влияя на поведение. Им удалось распутать полный цикл реакций, которые происходят вокруг ядра и позволяют клетке вести свой собственный внутренний отсчет времени с помощью авторегуляции белковой машины.
Таким образом, на данный момент известно, что суточные ритмы организма поддерживаются работой внутренних клеточных часов. А как же факторы среды?
Факторы среды — водители ритма
Существует связка между внутренними процессами и тем, что происходит вовне, — это водители ритма, синхронизаторы (zeitgebers). Это факторы внешней среды, которые помогают внутренним часам подстраиваться под ее изменения. Наиболее важным водителем ритма является, конечно же, свет. Также к водителям ритма относятся температура, атмосферное давление; для человека важными факторами становятся пищевые привычки, физические упражнения, прием медикаментов.
При быстрой значительной смене часовых поясов (более 4 часов) у человека может возникнуть джетлаг (физиологический синдром, который проявляется в виде бессонницы, усталости, головной боли, потери аппетита и/или расстройств ЖКТ). Причиной этого является рассогласование внутренних суточных часов человека с солнечными часами в новом для него часовом поясе. Состояние джетлага продолжается до тех пор, пока внутренние часы организма не синхронизируются с местным временем благодаря внешним водителям ритма.
И тут мы переходим к следующему направлению исследования циркадных ритмов. Его масштаб — скорее уже весь организм, нежели клетка. Эта история затрагивает смену режимов сна и бодрствования, джетлаг. И важный герой тут — мелатонин.
N.B. Интересно, что в научных публикациях эти направления практически не пересекаются: в статьях про клеточные часы обычно нет упоминаний мелатонина, и наоборот, в статьях, посвященных изучению влияния мелатонина на организм/ткани/клетки, не упоминается белковая машина клеточных часов.
Из истории мелатонина
Параллельно изучению внутренних часов клетки развивались исследования работы водителей ритма. Но здесь по-прежнему остается много вопросов по механизмам этой работы. Сама по себе история открытия мелатонина замечательна:
1917 год. МакКорд и Аллен решили посмотреть, что будет если капнуть экстракт из эпифиза быков на лягушек и головастиков [4]. Удивительно, как ученым приходят в голову такие идеи? Было обнаружено, что кожа подопытных животных мгновенно осветляется. Предположили, что некое вещество, содержащееся в эпифизе быков, приводит к тому, что меланин агрегируется вокруг клеточного ядра.
Меланины — высокомолекулярные пигменты, влияющие на цвет кожи.
1958 год. А.Б. Лернер, дерматолог из Йельского университета, вместе с коллегами выделил из эпифиза быков вышеописанное вещество, изменяющее цвет кожи лягушек [5]. Они рассчитывали, что это вещество будет полезно при лечении кожных болезней. Назвали вещество «мелатонин». Слова «мелатонин» и «меланин» имеют общий греческий корень melos — черный. Дерматологические надежды Лернера и коллег на мелатонин не оправдались, но это открытие не осталось незамеченным.
1968 год. Барри Рид в Австралии изучал суточное (циркадное) изменение окраски рыбок нанностомус Бекфорда (Nannostomus anomalus Steindachner) [6]. Примечательность этой рыбки заключается в том, что на ее теле наблюдается яркая темная полоса днем, а ночью рыбка становится практически прозрачной; на теле проступают три темных овальных пятна: посередине тела, возле анального плавника и у корня хвостового плавника. Рид исследовал периодичность появления полос-пятен у нормальных и ослепленных рыбок, помещал их в условия постоянного освещения и постоянной темноты. Результаты экспериментов представлены в таблице 1. Из результатов эксперимента стало понятно, что на смену окраски скорее влияла освещенность, чем способность рыбок видеть. Изменение окраски занимало 15–30 минут.
Рыбка | Режим освещения | Дневная полоса | Ночные пятна |
---|---|---|---|
здоровая | обычный режим день–ночь | днем — есть, ночью — нет | днем — нет, ночью — есть |
здоровая | постоянная ночь | появляется — исчезает по 24-часовому циклу: в настоящий день — есть, в настоящую ночь — нет | присутствуют постоянно, то есть в настоящий день происходит наложение полос на пятна |
здоровая | постоянный день | присутствуют постоянно | никогда не появляются |
ослепленная | обычный режим день–ночь | смена окраски полностью соответствует режиму здоровых рыбок, неотличима ни по одному из параметров | |
ослепленная | постоянная ночь | смена окраски соответствует режиму здоровых рыбок в обычном режиме день–ночь | |
ослепленная | постоянный день | присутствуют постоянно | никогда не появляются |
здоровая, и ослепленная | постоянная ночь более 1–2 недель | изменения цвета стали беспорядочными и неясными |
Далее Рид добавлял в аквариум различные соединения с целью найти вещество, которое будет приводить к появлению ночных пятен. Среди исследуемых веществ были мелатонин, серотонин, N-ацетилсеротонин, гармин и другие. Только добавление мелатонина приводило к появлению ночных пятен и исчезновению дневной полосы. Рид предположил, что именно мелатонин отвечает за циркадное появление ночного рисунка на теле нанностомуса in vivo.
В 1975 г. Линч с соавторами, исследуя мелатонин в моче 6 здоровых добровольцев, обнаружили циркадный ритм его наработки эпифизом — концентрация мелатонина значительно отличалась у разных людей, но все они демонстрировали многократное повышение концентрации мелатонина в ночные часы по сравнению с дневными значениями [7]. Видимо, мелатонин умеет не только изменять пятнышки на теле рыбки: циклы концентрации мелатонина оказались универсальны для всех известных животных, растений и грибов. Возникает вопрос: а что делает мелатонин и зачем повышается его концентрация в организме?
Как мелатонин стал вестником ночи
Мелатонин — это очень древняя молекула. Ученые предполагают, что изначальная функция мелатонина в цианобактериях и альфа-протеобактериях заключалась в том, чтобы нейтрализовать активные формы кислорода, которые образовывались в этих одноклеточных в результате их жизнедеятельности. Существует гипотеза, что ранние прокариоты поглотили цианобактерии и альфа-протеобактерии, и в результате последовавшего симбиоза превратились в хлоропласты и митохондрии, соответственно — так мелатонин проник в клетки эукариот [8–10]. У простейших одноклеточных активные формы кислорода активнее вырабатывались в дневное время. Поэтому простейшим бактериям, вероятно, днем требовалось больше мелатонина, а ночью — меньше; так возник суточный ритм мелатонина. При переходе к многоклеточности, когда большинство клеток организма оказывалось буквально погружено внутрь тела и не видело света, потребовалось сообщать всем клеткам внутри организма информацию о том, что происходит снаружи: день или ночь. И многоклеточные организмы приняли цикл мелатонина в качестве сигнальной системы для этой цели.
Свет является главным водителем ритма, влияющим на циркадные ритмы в организме. Вот как система светового оповещения работает у млекопитающих, в том числе у человека. Свет попадает на сетчатку глаза. Кроме всем известных со школы колбочек и палочек, в сетчатке есть ганглиозные клетки, содержащие пигмент меланописин [11]. Сигналы с этих клеток поступают в супрахиазматическое ядро (СХЯ) по зрительному нерву. СХЯ — это главный генератор циркадных ритмов у млекопитающих, расположенный в передней области гипоталамуса. СХЯ передает сигнал в эпифиз (шишковидное тело), где регулируется выработка мелатонина. Есть только одно большое «но»: у млекопитающих (и дневных, и ночных) синтез мелатонина скорее обратно пропорционален освещенности (много мелатонина вырабатывается ночью, а не днем), в отличие от древних одноклеточных, которых мелатонин защищал от свободных радикалов [12]. Связано это с тем, что в темное время суток СХЯ посылает сигнал, который активирует ключевой фермент синтеза мелатонина — арилалкиламин-N-ацетилтрансферазу (AANAT) в шишковидном теле. Фермент начинает энергично синтезировать мелатонин, осуществляя первую реакцию ацетилирования. В качестве субстрата AANAT использует другой индол со знакомым многим названием — серотонин (рис. 1). Таким образом, в шишковидном теле наблюдаются колебания двух индолов: днем в эпифизе много серотонина, а с наступлением ночи и включением фермента AANAT этот серотонин превращается в мелатонин и выделяется в кровь [13], [14].
Рисунок 1. Схема синтеза мелатонина из серотонина в клетках эпифиза.
адаптировано по материалам сайта Medi.ru
Соответственно, длительное чрезмерное освещение приводит к сильно сниженному уровню мелатонина, что неблагоприятно сказывается на состоянии организма. Поэтому физиологи рекомендуют спать ночью, приглушать свет, выключать мониторы/телефоны/гаджеты за час до сна, а утром выходить на яркий солнечный свет.
Рецепторы мелатонина и его рецепторонезависимые эффекты
Что известно о молекулярных механизмах действия мелатонина в организме? По крайней мере часть работы мелатонина осуществляется через его специфические рецепторы. В настоящий момент клонированы три рецептора мелатонина. Эти рецепторы относятся к семейству сопряженных с G-белком рецепторов (G-protein-coupled receptors, GPCRs), функция которых заключается в активировании внутриклеточных путей передачи сигнала. У млекопитающих обнаружены два трансмембранных рецептора — МТ1 и МТ2 (рис. 2) — их кристаллическая структура была опубликована в 2019 году в журнале Nature [15], [16].
Рисунок 2. Структура рецепторов мелатонина MT1 (синий) ) и MT2 (зеленый). Вторичная структура белков (альфа-спирали, бета-слои и петли) выделена более насыщенным цветом. Рецепторы погружены в цитоплазматическую мембрану. Мелатонин (фиолетовый) связывается с рецепторами, что приводит к передаче сигнала в клетку. Рисунок получен на основе структур 6me2 (MT1) и 6me7 (MT2) в программе UCSF Chimera.
МТ1 обнаружены в гипофизе, сетчатке, СХЯ, а чаще всего встречаются на коже человека. МТ1 модулируют активность нейронов, сужение артериальных сосудов, пролиферацию раковых клеток, репродуктивную и метаболическую функции [17], [18]. МТ2 экспрессируются в сетчатке и эпителии. Показано, что активация МТ2 ассоциирована с несколькими функциями в организме: с ингибированием высвобождения дофамина в сетчатке, с индукцией релаксации гладкой мускулатуры в стенках кровеносных сосудов, с усилением иммунного ответа. Что касается циркадных ритмов, то тут роль МТ2 заключается в сдвиге фазы циркадных ритмов возбуждения нейронов в СХЯ [17], [18]. У амфибий и птиц найден третий рецептор — МТ3, который у млекопитающих пока не обнаружен [19]. Плюс, что примечательно, существуют ядерные рецепторы мелатонина: они принадлежат к ROR/RZR подсемействам; посредством ядерных рецепторов мелатонин может влиять на иммунную и центральную нервную системы [20].
Кроме влияния на процессы в клетке через трансмембранные рецепторы, мелатонин обладает способностью проникать внутрь самой клетки. Происходит это благодаря химической природе вещества, которая позволяет проходить и через гематоэнцефалический барьер, и через мембрану клетки. Такой путь проникновения и работы мелатонина в литературе обобщается под размытым понятием «рецептор-независимые эффекты мелатонина» [21]. Как раз с этими эффектами связывают многочисленные воздействия мелатонина на физиологические процессы: на кровяное давление, на иммунную систему, противоопухолевую защиту и т.д. Из молекулярных механизмов рецептор-независимых эффектов мелатонина известно, что в цитозоле мелатонин взаимодействует с определенными редуктазами, например, с хинон-редуктазой-2. Показано, что этот фермент обеспечивает антиоксидантное воздействие [22]. Другой обнаруженный партнер для связывания мелатонина — кальмодулин. Этот небольшой, высококонсервативный кальций-связывающий белок играет ключевую роль в управлении метаболизмом клетки. Поскольку структуры мелатонина и кальмодулина филогенетически консервативны, взаимодействие кальмодулин—мелатонин, вероятно, представляет собой важный механизм регуляции и синхронизации физиологии клетки [23].
Подведем итоги
Наступила ночь, и вот в эпифизе образовался гормональный сигнал времени — мелатонин. Попробуем ответить на поставленный выше вопрос: а что делает мелатонин и зачем повышается его концентрация в организме?
Первое. Для мелатонина показана способность поддерживать и корректировать внутриклеточные циркадные ритмы: доказана эффективность приема мелатонина в уменьшении и сокращении джетлага [24]. При сбое ритма мелатонин помогает привести внутренние часы в соответствие солнечным часам. Как он это делает? Видимо, влияя на СХЯ и осуществляя обратную связь. Для механизма этой обратной связи показано, что прием мелатонина днем вызывает активацию СХЯ [25]. Значительную роль в этой активации, по-видимому, играют рецепторы мелатонина, MT1 и MT2, которые находятся на мембране клеток СХЯ. Так что тут мы видим, что мелатонин действительно является активным участником циркадных ритмов.
Второе. С наступлением ночи мелатонин, кроме переключения фазы циркадных ритмов в нервной системе, выделяется в кровь и разносится по всему организму. Мы знаем, что молекула теоретически способна проникнуть в любую клетку организма и провести там некую работу. И все эти влияния мелатонина не только убирают усталость и обеспечивают качественный сон, но и участвуют в защите от злокачественных новообразований [26]. И наоборот, сбой ритмов, видимо, провоцирует развитие онкологических и нейродегенеративных заболеваний [27], [28]. К сожалению, молекулярные механизмы этих эффектов мелатонина и циркадных ритмов в целом изучены гораздо слабее.
Одно можно сказать точно: циркадные ритмы, их водители (в том числе мелатонин) и физиологические проявления (например, сон и отдых), видимо, гораздо сильнее связаны с благополучной работой нашего тела, чем мы привыкли думать. Есть над чем поразмыслить современному человеку, пренебрегающему здоровым сном и жертвующему ночными часами ради работы или просмотра фильмов.