математический знак что значит
Равенство и неравенство. Знаки: больше, меньше, равно
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Математические знаки
Скорее всего, к первому классу ребенок уже отличает на слух и визуально, что горстка из десяти ягод больше трех штук. Чтобы внедрить в жизнь новые обозначения, посмотрим на знаки «больше», «меньше», «равно» в картинках.
Символ больше (>) — это когда острый нос галочки смотрит направо. Его нужно использовать, когда первое число больше второго:
Символ меньше (
Символ равенства (=) — это когда два коротких отрезка записаны горизонтально и параллельны друг другу. Используем его при сравнении двух одинаковых чисел:
Чтобы ребенку было легче запомнить схожие между собой знаки, можно применить игровой метод. Для этого нужно сравнить числа и определить в каком порядке они стоят. Далее ставим одну точку у наименьшего числа и две — рядом с наибольшим. Соединяем точки и получаем нужный знак. Вот так просто:
Равенство и неравенство
Что такое равенство в математике — это когда одно подобно по количеству другому и между ними можно поставить знак =.
Для примера посмотрим на картинку с изображением геометрических фигур. Справа и слева количество одинаковое, значит можно поставить символ «равно».
Наглядный пример неравенства изображен на картинке ниже. Слева видим три фигуры, а справа — четыре. При этом мы знаем, что три не равно четырем или еще так: три меньше четырех.
Урок в школе зачастую проходит перед учебником, тетрадью и доской. Дома же можно использовать компьютер и некоторые задания выполнять в онлайн-формате. Как найти знаки на клавиатуре? Ответ на картинке:
Типы неравенств
Знаки математические
Условные обозначения, предназначенные для записи математических понятий, предложений и выкладок. Например, √2
(квадратный корень из двух), 3 > 2 (три больше двух) и т.п.
Развитие математической символики было тесно связано с общим развитием понятий и методов математики. Первыми З. м. были знаки для изображения чисел — Цифры, возникновение которых, по-видимому, предшествовало письменности. Наиболее древние системы нумерации — вавилонская и египетская — появились ещё за 3 1 /2 тысячелетия до н. э.
Первые З. м. для произвольных величин появились много позднее (начиная с 5—4 вв. до н. э.) в Греции. Величины (площади, объёмы, углы) изображались в виде отрезков, а произведение двух произвольных однородных величин — в виде прямоугольника, построенного на соответствующих отрезках. В «Началах» Евклида (3 в. до н. э.) величины обозначаются двумя буквами — начальной и конечной буквами соответствующего отрезка, а иногда и одной. У Архимеда (3 в. до нашей эры) последний способ становится обычным. Подобное обозначение содержало в себе возможности развития буквенного исчисления. Однако в классической античной математике буквенного исчисления создано не было.
Начатки буквенного изображения и исчисления возникают в позднеэллинистическую эпоху в результате освобождения алгебры от геометрической формы. Диофант (вероятно, 3 в.) записывал неизвестную (х) и её степени следующими знаками:
[ — от греческого термина δυναμις (dynamis — сила), обозначавшего квадрат неизвестной,
— от греческого χυβος (k_ybos) — куб]. Справа от неизвестной или её степеней Диофант писал коэффициенты, например 3х 5 изображалось
(где = 3). При сложении Диофант приписывал слагаемые друг к другу, для вычитания употреблял специальный знак
; равенство Диофант обозначал буквой ι [от греческого ισος (isos) — равный]. Например, уравнение
у Диофанта записалось бы так:
(здесь
означает, что единица не имеет множителя в виде степени неизвестного).
Несколько веков спустя индийцы ввели различные З. м. для нескольких неизвестных (сокращения наименований цветов, обозначавших неизвестные), квадрата, квадратного корня, вычитаемого числа. Так, уравнение
в записи Брахмагупты (См. Брахмагупта) (7 в.) имело бы вид:
йа ва 3 йа 10 ру 8
(йа — от йават — тават — неизвестное, ва — от варга — квадратное число, ру — от рупа — монета рупия — свободный член, точка над числом означает вычитаемое число).
Создание современной алгебраической символики относится к 14—17 вв.; оно определялось успехами практической арифметики и учения об уравнениях. В различных странах стихийно появляются З. м. для некоторых действий и для степеней неизвестной величины. Проходят многие десятилетия и даже века, прежде чем вырабатывается тот или иной удобный символ. Так, в конце 15 и. Н. Шюке и Л. Пачоли употребляли знаки сложения и вычитания
(от лат. plus и minus), немецкие математики ввели современные + (вероятно, сокращение лат. et) и —. Ещё в 17 в. можно насчитать около десятка З. м. для действия умножения.
Различны были и З. м. неизвестной и её степеней. В 16 — начале 17 вв. конкурировало более десяти обозначений для одного только квадрата неизвестной, например се (от census — латинский термин, служивший переводом греческого δυναμις, Q (от quadratum), , A (2),
, Aii, aa, a 2 и др. Так, уравнение
имело бы у итальянского математика Дж. Кардано (1545) вид:
у немецкого математика М. Штифеля (1544):
у итальянского математика Р. Бомбелли (1572):
французского математика Ф. Виета (1591):
у английского математика Т. Гарриота (1631):
В 16 и начале 17 вв. входят в употребление знаки равенства и скобки: квадратные (Р. Бомбелли, 1550), круглые (Н. Тарталья, 1556), фигурные (Ф. Виет, 1593). В 16 в. современный вид принимает запись дробей.
Значительным шагом вперёд в развитии математической символики явилось введение Виетом (1591) З. м. для произвольных постоянных величин в виде прописных согласных букв латинского алфавита В, D, что дало ему возможность впервые записывать алгебраические уравнения с произвольными коэффициентами и оперировать ими. Неизвестные Виет изображал гласными прописными буквами А, Е. Например, запись Виета
[cubus — куб, planus — плоский, т. е. В — двумерная величина; solidus — телесный (трёхмерный), размерность отмечалась для того, чтобы все члены были однородны] в наших символах выглядит так:
Виет явился творцом алгебраических формул. Р. Декарт (1637) придал знакам алгебры современный вид, обозначая неизвестные последними буквами лат. алфавита х, у, z, а произвольные данные величины — начальными буквами а, b, с. Ему же принадлежит нынешняя запись степени. Обозначения Декарта обладали большим преимуществом по сравнению со всеми предыдущими. Поэтому они скоро получили всеобщее признание.
Дальнейшее развитие З. м. было тесно связано с созданием анализа бесконечно малых, для разработки символики которого основа была уже в большой мере подготовлена в алгебре.
Даты возникновения некоторых математических знаков
и для бесконечно малого приращения o. Несколько ранее Дж. Валлис (1655) предложил знак бесконечности ∞.
Создателем современной символики дифференциального и интегрального исчислений является Г. Лейбниц. Ему, в частности, принадлежат употребляемые ныне З. м. дифференциалов
Огромная заслуга в создании символики современной математики принадлежат Л. Эйлеру. Он ввёл (1734) в общее употребление первый знак переменной операции, именно знак функции f (x) (от лат. functio). После работ Эйлера знаки для многих индивидуальных функций, например тригонометрических, приобрели стандартный характер. Эйлеру же принадлежат обозначения постоянных е (основание натуральных логарифмов, 1736), π [вероятно, от греческого περιφερεια (periphereia) — окружность, периферия, 1736], мнимой единицы
(от французского imaginaire — мнимый, 1777, опубликовано в 1794).
В 19 в. роль символики возрастает. В это время появляются знаки абсолютной величины |x| (К. Вейерштрасс, 1841), вектора r̅ (О. Коши, 1853), определителя
(А. Кэли, 1841) и др. Многие теории, возникшие в 19 в., например Тензорное исчисление, не могли быть развиты без подходящей символики.
Наряду с указанным процессом стандартизации З. м. в современной литературе весьма часто можно встретить З. м., используемые отдельными авторами только в пределах данного исследования.
С точки зрения математической логики, среди З. м. можно наметить следующие основные группы: А) знаки объектов, Б) знаки операций, В) знаки отношений. Например, знаки 1, 2, 3, 4 изображают числа, т. е. объекты, изучаемые арифметикой. Знак операции сложения + сам по себе не изображает никакого объекта; он получает предметное содержание, когда указано, какие числа складываются: запись 1 + 3 изображает число 4. Знак > (больше) есть знак отношения между числами. Знак отношения получает вполне определённое содержание, когда указано, между какими объектами отношение рассматривается. К перечисленным трём основным группам З. м. примыкает четвёртая: Г) вспомогательные знаки, устанавливающие порядок сочетания основных знаков. Достаточное представление о таких знаках дают скобки, указывающие порядок производства действий.
Знаки каждой из трёх групп А), Б) и В) бывают двух родов: 1) индивидуальные знаки вполне определённых объектов, операций и отношений, 2) общие знаки «неременных», или «неизвестных», объектов, операций и отношений.
Примеры знаков первого рода могут служить (см. также таблицу):
A1) Обозначения натуральных чисел 1, 2, 3, 4, 5, 6, 7, 8, 9; трансцендентных чисел е и π; мнимой единицы i.
Б1) Знаки арифметических действий +, —, ·, ×,:; извлечения корня , дифференцирования
знаки суммы (объединения) ∪ и произведения (пересечения) ∩ множеств; сюда же относятся знаки индивидуальных функций sin, tg, log и т.п.
B1) Знаки равенства и неравенства =, >,
Знаки второго рода изображают произвольные объекты, операции и отношения определённого класса или объекты, операции и отношения, подчинённые каким-либо заранее оговорённым условиям. Например, при записи тождества (a + b)(a — b) = a 2 — b 2 буквы а и b обозначают произвольные числа; при изучения функциональной зависимости у = х 2 буквы х и у — произвольные числа, связанные заданным отношением; при решении уравнения
х обозначает любое число, удовлетворяющее данному уравнению (в результате решения этого уравнения мы узнаём, что этому условию соответствуют лишь два возможных значения +1 и —1).
С логической точки зрения, законно такого рода общие знаки называть знаками переменных, как это принято в математической логике, не пугаясь того обстоятельства, что «область изменения» переменного может оказаться состоящей из одного единственного объекта или даже «пустой» (например, в случае уравнений, не имеющих решения). Дальнейшими примерами такого рода знаков могут служить:
A2) Обозначения точек, прямых, плоскостей и более сложных геометрических фигур буквами в геометрии.
Б2) Обозначения f, F, φ для функций и обозначения операторного исчисления, когда одной буквой L изображают, например, произвольный оператор вида:
Обозначения для «переменных отношений» менее распространены, они находят применение лишь в математической логике (см. Алгебра логики) и в сравнительно абстрактных, по преимуществу аксиоматических, математических исследованиях.
Лит.: Cajori F., A history of mathematical notations, v. 1—2, Chi., 1928—29.
Математические знаки
Знаки операций или математические символы — знаки, которые символизируют определённые математические действия со своими аргументами.
К самым распространённым относятся:
Исторический очерк
См. также
Литература
Полезное
Смотреть что такое «Математические знаки» в других словарях:
МАТЕМАТИЧЕСКИЕ ЗНАКИ — см. Знаки математические … Большой Энциклопедический словарь
Математические знаки — различные наборные знаки, применяемые при ручном металлическом наборе математических и др. формул. М. з. выпускаются не только в виде литер для ручного набора, но и в виде матриц для строко и буквоотливного набора при изготовлении печатных форм… … Реклама и полиграфия
математические знаки — см. Знаки математические. * * * МАТЕМАТИЧЕСКИЕ ЗНАКИ МАТЕМАТИЧЕСКИЕ ЗНАКИ, см. Знаки математические (см. ЗНАКИ МАТЕМАТИЧЕСКИЕ) … Энциклопедический словарь
Математические знаки — т. е. знаки и сокращения, употребляющиеся в математике. А. Знаки действий: 1) сложения знак (+) называется плюс (plus более), 2) вычитание знак его ( ) минус (minus менее); 3) умножения знак (×) или (·); 4) деление его знак (:) или горизонтальная … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Математические знаки — см. Знаки математические … Большая советская энциклопедия
МАТЕМАТИЧЕСКИЕ ЗНАКИ — см Знаки математические … Естествознание. Энциклопедический словарь
знаки математические — условные обозначения, служащие для записи математических понятий, предложений и выкладок. Например, математические знаки +, –, =, > (больше), √ (знак корня), sin (синус), ∫ (интеграл) и т. д. Первыми математическими знаками, возникшими за… … Энциклопедический словарь
Знаки математические — условные обозначения (символы), служащие для записи математических понятий, предложений и вычислений. О роли математических знаков великий русский математик Николай Лобачевский писал так: «Подобно тому, как дар слова обогащает нас мнениями других … Начала современного естествознания
Как легко понять знаки Σ и П с помощью программирования
Для тех, кто подзабыл матешу
Вот говорят, что если ты не закончил Физтех, ФПМ или Бауманку, тебе в программировании делать нечего. Почему так говорят? Потому что, дескать, ты не учил сложную математику, а в программировании без неё никуда.
Это всё чушь, конечно. Если вы плохо знаете математику, вы можете быть блестящим разработчиком. Вы вряд ли напишете драйверы для видеокарты, но вы запросто сделаете мобильное приложение или веб-сервис. А это — основные деньги в этой среде.
Но всё же, чтобы получить некоторое интеллектуальное превосходство, вот вам пара примеров из страшного мира математики. Пусть они покажут вам, что не все закорючки в математике — это ад и ужас. Вот две нестрашные закорючки.
Знак Σ — сумма
Когда математикам нужно сложить несколько чисел подряд, они иногда пишут так:
Σ (читается «сигма») — это знак алгебраической суммы, который означает, что нам нужно сложить все числа от нижнего до верхнего, а перед этим сделать с ними то, что написано после знака Σ.
На картинке выше написано следующее: «посчитать сумму всех чисел от 5 до 15, умноженных на два». То есть:
Давайте для закрепления ещё один пример. На картинке ниже будет сказано «Найди сумму квадратов чисел от 5 до 10». То есть «возьми все числа от 5 до 10, каждое из них возведи в квадрат, а результаты сложи».
Но мы с вами как программисты видим, что здесь есть повторяющиеся действия: мы много раз складываем числа, которые меняются по одному и тому же правилу. А раз мы знаем это правило и знаем, сколько раз надо его применить, то это легко превратить в цикл. Для наглядности мы показали, какие параметры в Σ за что отвечают в цикле:
Произведение П
С произведением в математике работает точно такое же правило, только мы не складываем все элементы, а перемножаем их друг на друга:
А если это перевести в цикл, то алгоритм получится почти такой же, что и в сложении:
Что дальше
Сумма и произведение — простые математические операции, пусть они и обозначаются страшными символами. Впереди нас ждут интегралы, дифференциалы, приращения и бесконечные ряды. С ними тоже всё не так сложно, как кажется на первый взгляд.
ЗНАКИ МАТЕМАТИЧЕСКИЕ
— условные обозначения, предназначенные для записи математич. понятий и выкладок. Напр., понятие «квадратный корень из числа, равного отношению длины окружности к ее диаметру» обозначается кратко а предложение «отношение длины окружности к ее диаметру больше, чем три и десять семьдесят первых, и меньше, чем три и одна седьмая» записывается в виде:
Развитие математической символики было тесно связано с общим развитием понятий и методов математики.
Начатки буквенного обозначения и исчисления возникают в позднеэллинистич. эпоху в результате освобождения алгебры от геометрич. формы. Диофант (вероятно, 3 в.) обозначал неизвестную (х)и ее степени следующими знаками:
(здесь а
означает, что единица
не имеет множителя в виде степени неизвестного).
Несколько веков спустя индийцы, разрабатывавшие числовую алгебру, ввели различные 3. м. для нескольких неизвестных (сокращения наименований цветов, обозначавших неизвестные), квадрата, квадратного корня, вычитаемого числа. Так, уравнение
в записи Брахмагупты (7 в.) имело бы вид:
у М. Штифеля (М. Stifel, 1544):
у Р. Бомбелли(R. Bombelli, 1572):
— куб неизвестной,
— неизвестная; eguale
— равно); у Ф. Виета (F. Viete, 1591):
В 16 и начале 17 вв. входят в употребление знаки равенства и скобки: квадратные (Р. Бомбелли, 1550), круглые (Н. Тарталья, N. Tartaglia, 1556), фигурные (Ф. Виет, 1593).
Дальнейшее развитие 3. м. было тесно связано с созданием анализа бесконечно малых, для разработки символики к-рого основа была уже в большой мере подготовлена в алгебре. И. Ньютон (I. Newton) в своем методе флюксий и флюент (1666 и следующие годы) ввел знаки для последовательных флюксий (производных) величины хв виде и для бесконечно малого приращения о. Несколько ранее Дж. Валлис (J. Wallis, 1655) предложил знак бесконечности оо. Создателем современной символики дифференциального и интегрального исчислений является Г. Лейбниц (G. Leibniz). Ему, в частности, принадлежат употребляемые ныне З. м. дифференциалов dx, d 2 x, d 3 x и интеграла
В 19 в. роль символики еще более возрастает и, наряду с созданием новых 3. м., математики стремятся к стандартизации основных символов. Некоторые широко употребительные ныне 3. м. появляются лишь в это время: знак абсолютной величины | х| (К. Вейерштрасс, К. Weierstrass, 1841), вектора (О. Коши, A. Cauchy, 1853), определителя
(А. Кэли, A. Cayley, 1841) и др. Многие теории, возникшие в 19 в., напр, тензорное исчисление, не могли быть развиты без подходящей символики. Характерно при этом увеличение удельного веса 3. м. для отношений, напр., сравнимости
(К. Гаусс, С. Gauss, 1801), принадлежности
изоморфизма
эквивалентности
и т. д. Знаки переменных отношений появляются с развитием математич. логики, особенно широко применяющей 3. м.
С точки зрения математической логики, среди 3. м. можно наметить следующие основные группы: А) знаки объектов, Б) знаки операций, В) знаки отношений. Например, знаки 1, 2, 3, 4 изображают числа, т. е. объекты, изучаемые арифметикой. Знак операции сложения + сам по себе не изображает никакого объекта; он получает предметное содержание лишь тогда, когда указано, какие числа складываются: запись 1+3 изображает число 4. Знак > (больше) есть знак отношения между числами. Знак отношения получает вполне определенное содержание, когда указано, между какими объектами отношение рассматривается. К указанным трем основным группам 3. м. примыкает еще четвертая: Г) вспомогательные знаки, устанавливающие порядок сочетания основных знаков. Достаточное представление о таких знаках дают скобки, указывающие порядок производства арифметич. действий.
Знаки каждой из трех групп А), Б) и В) бывают двух родов: 1) индивидуальные знаки вполне определенных объектов, операций и отношений, 2) общие знаки «переменных», или «неизвестных», объектов, операций и отношений. Примерами знаков первого рода могут служить (см. также таблицу на кол. 462, 463):
А 1) Обозначения натуральных чисел 1, 2, 3, 4, 5, 6, 7, 8, 9; трансцендентных чисел еи я; мнимой единицы и т. п.
Сюда же относятся знаки индивидуальных функций sin, tg, log и т. п.
буквы а и 6 обозначают произвольные числа; при изучении’функциональной зависимости
буквы х и у изображают произвольные числа, связанные заданным отношением; при решении уравнения
С логич. точки зрения вполне законно все такого рода общие знаки наз. знаками переменных, как это принято в математич. логике («область изме-
Даты возникновения некоторых математических знаков