лизин и метионин что это
Аминокислоты: свойства и польза
Что такое аминокислоты
Аминокислоты – это органические соединения, которые сочетают в себе свойства аминов и кислот, образующие белок. В каком-то смысле они как деталь конструктора (белка), являющегося основой жизни.
Точно так же, как можно по-разному собрать предметы из конструктора, есть несколько способов, которыми 22 аминокислоты могут объединиться в последовательность для создания различных белковых структур, таких как гормоны, ферменты, иммунная система, клетки или мышечные волокна.
Так называемые «незаменимые», действуют на организм, подобно витаминам, их отсутствие в организме может привести к серьезным заболеваниям или даже к летальному исходу.
К незаменимым аминокислотам относятся:
Когда продукты содержат все незаменимые аминокислоты, их называют полноценными белками. Существует распространенное заблуждение, что растительные белки не содержат всех незаменимых аминокислот. Это неправда. В то время как в большинстве растительных источников белков обычно отсутствуют одна или две незаменимые аминокислоты в значительных количествах, другие источники растительных белков могут дополнять эти аминокислоты, обеспечивая полноценные белки.
Заменимые аминокислоты организм вырабатывает самостоятельно, независимо от того, есть ли в вашем рационе продукты, содержащие их.
Существуют также условно незаменимые аминокислоты, которые вырабатываются, например, во время борьбы с болезнью или со стрессом.
Условное незаменимые аминокислоты:
Сбалансированная диета – важное условие поступления в организм незаменимых и заменимых аминокислот. Если их не будет хватать, телу будет куда сложнее вырабатывать белки, необходимые для нормального функционирования мышц и тканей.
Изучайте тонкости антивозрастной медицины из любой точки мира. Для удобства врачей мы создали обучающую онлайн-платформу Anti-Age Expert: Здесь последовательно выкладываются лекции наших образовательных программ, к которым открыт доступ 24/7. Врачи могут изучать материалы необходимое количество раз, задавать вопросы и обсуждать интересные клинические случаи с коллегами в специальных чатах
Польза для организма
Для того, чтобы оценить масштаб работы, которую аминокислоты проделывают в нашем организме, достаточно перечислить основные их функции и возможности:
Помощь в формировании и росте мышц, соединительной ткани и кожи;
Поддержка мышечного тонуса и силы тканей;
Обеспечение тела энергией;
Поддержание здоровья волос и кожи.
Различные добавки с содержанием аминокислот обычно рекомендуют спортсменам и людям, ведущим активный образ жизни, чтобы повысить продуктивность и сохранить силу мышц.
Кроме того, прием аминокислот может уменьшить естественную потерю мышечной массы у пожилых людей и восстановить объем мышц, особенно если они тренируются с отягощениями.
Аминокислоты и старение
Пять из двадцати аминокислот, формирующих белок в организме человека, имеют проблемы с усвоением. Биологическое старение начинается с недостаточного всасывания в кишечнике хотя бы одной или всех пяти из этих аминокислот.
Поскольку наличие всех 20 аминокислот человеческого белка необходимо для создания любого существенного белка, неспособность абсорбировать определенный белок из кишечника вынуждает лимфатическую систему «красть» недостающее питание из организма.
Например, такой признак возраста как морщины объясняется тем, что теряется коллаген. А он “крадется” организмом из-за содержания в нем аминокислот. Снижение коллагена в коже и субдуральные гематомы, часто наблюдаемые при старении, являются внешними структурными признаками активности лимфатической системы. При старении лимфатическая система становится чрезвычайно агрессивной, перерабатывая редко используемые структуры для обеспечения недостающих аминокислот.
Приобретенное повреждение желудочно-кишечного тракта или потеря рецепторов для определенных аминокислот является основной причиной старения.
Получайте знания, основанные на доказательной медицине из первых уст ведущих мировых специалистов. В рамках Модульной Школы Anti-Age Expert каждый месяц проходят очные двухдневные семинары, где раскрываются тонкости anti-age медицины для врачей более 25 специальностей
Краткие выводы
Сбалансированная диета может помочь обеспечить здоровое потребление незаменимых и заменимых аминокислот в течение дня.
Аминокислоты помогают строить белковые цепи и играют вспомогательную роль почти во всех частях вашего тела.
Их дефицит может ускорить процессы старения.
Список использованной литературы
Saini, R. & Zanwar, A. A. (2013) Arginine Derived Nitric Oxide: Key to Healthy Skin, Bioactive Dietary Factors and Plant Extracts in Dermatology (pp. 73-82).
Reda, E., D’Iddio, S., Nicolai, R., Benatti, P. & Calvani, M. (2003) The Carnitine System and Body Composition Acta Diabetol, issue 40, (pp. 106-103).
Зачем нужны монодобавки с аминокислотами?
Содержание
Большинство из нас привыкли ассоциировать слово “аминокислоты” с комплексом или с BCAA, которые принимают спортсмены или люди, ведущие активный образ жизни. Но существует целый ряд аминокислот (как заменимых, так и незаменимых), которые можно принимать даже, если ваш организм не подвергается частым физическим нагрузкам.
Многие думают, что монодобавки подходят больше для продвинутых атлетов, но на самом деле знания о том, как работают разные аминокислоты помогут каждому правильно скорректировать свой рацион с учетом индивидуальных потребностей организма и конкретных оздоровительных целей.
Лизин — не только против герпеса
Лизин приобрел свою популярность благодаря свойству облегчать проявления вируса герпеса (как первого, так и второго типа), в некоторых случаях регулярный прием лизина может увеличить безрецидивный период инфекции.
Но помимо этого лизин принимает участие в других важных процессах, например:
Усредненная суточная норма лизина составляет 1-3 грамма. В качестве добавки аминокислоту лучше принимать на голодный желудок по 500 мг, запивая большим количеством воды.
При первых признаках проявления герпеса дозировку можно увеличить до 1000 мг.
Фенилаланин — снижает боль, улучшает настроение
Фенилаланин — незаменимая аминокислота, которая участвует в синтезе целого ряда веществ, среди них: дофамин, тирозин, эпинефрин и норэпинефрин. Все они важны, так как помогают лучше и быстрее адаптироваться к стрессовым ситуациям, поддерживать стабильное настроение и повышать наши когнитивные способности.
Среди других важных свойств фенилаланина можно отметить:
Усредненная суточная норма аминокислоты: 2-4 грамма, которая корректируется в зависимости от возраста и общего состояния здоровья.
Теанин — расслабление и улучшение внимания
Теанин — аминокислота, которая встречается в самом популярном во всем мире напитке — чае. Это вещество имеет легкий стимулирующий эффект, но в отличие от кофеина, теанин не вымывает калий и не обезвоживает организм.
Полезные свойства теанина распространяются на ментальное здоровье, нормальную работу сердечно-сосудистой, нервной и иммунной систем.
Для чего нужен теанин:
Суточная норма теанина — 100-200 мг в день, считается, чем выше дозировка этой аминокислоты, тем ощутимее эффект. К тому же, высокие дозы теанина не вызывают токсического воздействия на организм, поэтому его приём можно назвать условно безопасным.
Тирозин — вестник “гормона счастья”
Тирозин — незаменимая аминокислота, которая является предшественником дофамина — гормона, отвечающего за хорошее настроение и умственную работоспособность. Помимо этого тирозин участвует в синтезе адреналина, норадреналина, а также нужен для выработки пигмента меланина.
Добавки с тирозином повышают мотивацию, улучшают способность переключаться между задачами, а также помогают лучше справляться со стрессом.
Другим свойством тирозина, из-за которого он стал популярным среди спортсменов — влияние на энергетический обмен, а также на метаболизм жиров, белков и углеводов, благодаря чему достигается «жиросжигающий» эффект.
Дозировку тирозина рассчитывают по принципу: 12 мг на 1 кг веса.
Диметилглицин — несуществующий витамин
Диметилглицин (DMG или B16) — аминокислота, которая по своей структуре напоминает водорастворимые витамины, но таковой не является.
Главная причина использования DMG связана с его способностью увеличивать работоспособность и выносливость.
Среди основных полезных свойств диметилглицина можно выделить:
Рекомендуемая дозировка DMG — 5 мг в сутки.
Метионин — для здоровой печени и красивых волос
Метионин — незаменимая аминокислота, которая принимает участие в производстве креатина, а также ряда аминокислот и S-Аденозилметионин (SAMe) — вещества, способного улучшить ментальное здоровье и предупредить развитие остеопороза.
Для печени метионин играет важную роль, так как помогает ей быстрее восстановиться и снизить последствия токсического воздействия алкоголя.
Аминокислота является источником серы, что важно для здоровья костей и суставов, а также для производства другой аминокислоты — цистеина. Тандем метионина и цистеина может приглянуться тем, кто мечтает о красивой шевелюре, так как эти аминокислоты являются компонентами кератина — структурного белка волос.
Дозировка метионина для взрослого человека равна 13 мг на 1 кг веса.
Триптофан — поддерживает нормальный уровень серотонина
Триптофан стимулирует выработку серотонина — гормона, который помогает снизить тревожность, регулирует сон и аппетит.
Часто вместо триптофана используют 5-htp — побочный продукт, который образуется в процессе синтеза серотонина. Другими словами, 5-htp является обработанной формой триптофана.
Триптофан помогает снизить тягу к сладкому и простым углеводам, улучшает качество сна за счет стимуляции выработки мелатонина, повышает настроение и работоспособность.
Максимальная дозировка — до 2 грамм в сутки.
Глицин — для здорового сна
Глицин известен многим благодаря его “противотревожным” свойствам, частично в этом есть доля истины. Глицин принимает участие в выработке ГАМК (гамма-аминомасляной кислоты), которая является тормозным нейромедиатором. Благодаря этому достигается эффект расслабления и снижения уровня тревоги.
Глицин помогает наладить сон, борется с окислительным стрессом и является важным компонентом в вопросах ментального здоровья и работы нашего мозга.
Дозировка глицина для взрослого — 100-150 мг.
Как принимать аминокислоты
Аминокислоты лучше всего усваиваются натощак, минимум за 20-30 минут до еды. Исключение составляют аргинин и глютамин, их можно принимать после еды.
Если вы принимаете минералы в комплексе или монодобавках, то можно их пить вместе с аминокислотами, тем самым повысив их биодоступность.
Лизин и метионин что это
Органические соединения, находящиеся в цитоплазме живой клетки, представлены, в основном, белками. На их долю приходится более 50 % сухого веса клетки. Главными структурными компонентами белков, являются аминокислоты, определяющие важнейшие свойства и функции белков, в том числе и энзимов. История выделения отдельных аминокислот из гидролизата белка восходит к XIX веку, когда впервые был выделен глицин. С тех пор были выделены и описаны двадцать аминокислот, с наибольшей частотой встречающихся в белковых молекулах. Последним был открыт треонин, впервые выделенный W. Rose в 193 5г. из гидролизатов фибрина [34]. Позднее в отдельных молекулах были обнаружены некоторые редко встречающиеся аминокислоты. Роль двадцати аминокислот в определении конформации белков, их свойств в приложении к процессам биохимизма миокарда и сосудистой стенки является предметом настоящего обзора.
Каждая молекула аминокислоты содержит амино – и карбоксильную группы (– NH2 и – COOH соответственно). Все известные аминокислоты, кроме глицина и таурина, имеют асимметрию, в зависимости от стороны молекулы, к которой прикреплена аминогруппа, обозначаемую «L» или «D». В нативных белковых молекулах аминокислотные остатки имеют конфигурацию «L». Аминокислоты с конфигурацией «D» образуются некоторыми штаммами бактерий, не участвуют в синтезе белков и пептидов и обладают способностью угнетать активность ферментов.
Отдельные аминокислоты не синтезируются эндогенным путем и для удовлетворения анаболических потребностей организма должны поступать извне. Такие аминокислоты обозначаются как незаменимые, и к ним относятся лейцин, изолейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин.
К полузаменимым аминокислотам относятся те, которые образуются в организме, однако, в количествах, недостаточных для удовлетворения естественных потребностей: аргинин, гистидин, цистеин и таурин (в детском возрасте).
Некоторые аминокислоты обладают полифункциональностью за счет своего участия в конформации белков, полипептидов, влиянии на активность ферментов, гормонов и потому их роли в организме до настоящего времени считаются ключевыми. К этим аминокислотам относят метионин, таурин, цистеин, лизин, аргинин, триптофан и глутамин.
К настоящему времени, в связи с использованием новых методов хроматографии высоких разрешений, появились сведения о дисбалансе аминокислот и их связи с клинической симптоматикой при различных заболеваниях и воздействиях ксенобиотиков. Нарушения в обмене аминокислот описаны при железодефицитных анемиях [1], заболеваниях кожи [4], при воздействии на организм цианидов [46], сероуглерода [3], остром и хроническом поступлении в организм алкоголя [7].
Обмен аминокислот при ишемической болезни сердца изучается с начала пятидесятых годов XX столетия. В экспериментальных условиях в зоне инфаркта миокарда, развившемся у собак после пережатия коронарной артерии, наблюдалось выраженное снижение спектра свободных аминокислот крови [42]. При выраженном, прогрессирующем, кардиосклерозе в миокарде кроликов повышалось содержание фенилаланина и тирозина [2], что было в последующем установлено в клинике у больных ишемической болезнью сердца, причем степень повышения уровня аминокислот изменялась в зависимости от клинических форм коронарного атеросклероза (стенокардия различных функциональных классов, инфаркт миокарда) [5].
При анализе содержания свободных аминокислот в сыворотке крови, выявляемых при помощи нисходящей бумажной хроматографии, у больных коронарной недостаточностью концентрации аланина, аспарагиновой кислоты, валина, глутаминовой кислоты, лейцина, изолейцина, серина, треонина, фенилаланина были выше в сравнении с показателями здоровых лиц. В острую стадию инфаркта миокарда в сыворотке крови больных снижалось содержание аспарагиновой и глутаминовой аминокислот, а также треонина и валина, в подостром периоде и на стадии реабилитации пациентов в сыворотке повышалась концентрация аспарагиновой и глутаминовой аминокислот, а также серина, треонина, фенилаланина, изолейцина и лейцина [6].
С унификацией методов анализа аминокислот в крови и моче здоровых и больных лиц была утрачена разноречивость в результатах ранних исследований, установлены популяционные уровни нормальных значений содержания аминокислот в зависимости от пола и возраста, были опубликованы таблицы потребностей в аминокислотах и разработаны качественные и количественные критерии необходимых аминокислотных добавок к пищевым продуктам Национальным исследовательским советом по аминокислотным потребностям США. Далее будет описана роль аминокислот и промежуточных продуктов их обмена у здоровых и пациентов с различными заболеваниями, учитывая их ключевую роль в организме. Речь пойдет о метионине, таурине, цистеине, лизине, аргинине и триптофане.
Метионин является ключевой незаменимой аминокислотой, донатором метильных групп и серы. Принимает активное участие в формировании всех тканей организма, обмене углеводов, жиров и аминокислот, в активации антиоксидантных и детоксицирующих систем. Метионин служит эссенциальным предшественником цистеина, трипептидаглутатиона, таурина и посредством цистеина участвует в образовании инсулина и коэнзима А. Процессы метилирования (через S – аденозилметионин) необходимы для экспрессии генов, равновесия симпато – адреналовой системы, образования холина и ацетилхолина. Нарушения активности ферментов, участвующих в метаболизме метионина, приводят в клинике к проявлениям остеопороза и нейропсихической патологии [15, 35].
В отношении ишемической болезни сердца особую роль играют нарушения образования метионина, приводящие к накоплению в крови и моче его предшественника гомоцистеина.
При обследовании и лечении пациентов с гомоцистеинурией было обнаружено раннее и бурное развитие атеросклероза у молодых лиц [11, 20, 21, 37, 43]. В 1969г. впервые было опубликовано предположение, что гипергомоцист(е)инемия является существенным фактором риска развития атеросклероза и ишемической болезни сердца [33].
Клинические исследования, проведенные в течение сорока последующих лет выявили существенное его влияние на разрастание клеток гладкой мускулатуры с последующей эндотелиальной дисфункцией сосудов и развитием артериальной гипертонией с высоким риском тромбозов [31, 51, 54]. Когортные исследования подтвердили описанные результаты, более того, было установлено, что даже умеренное повышение концентрации гомоцист(е)ина в плазме является фактором риска раннего атеросклероза [10, 16, 19, 56].
Термином «гомоцистеин» в биохимии обозначают общую концентрацию свободного и связанного с белком гомоцистеина, гомоцистина (дисульфид гомоцистеина) и тионолактонагомоцистеина. Этот пул измеряется доступными и распространенными анализами [38]. В основе этих методов «золотым стандартом» остается высокоэффективная жидкостная хроматография с коэффициентом разброса результатов от 1,1 до 2,8 % в индивидуальных замерах и от 2,1 до 11,4 % в замерах партии образцов [28, 45].
В исследовательских центрах США было установлено, что повышенные уровни гомоцистеина могут быть снижены путем добавок в пищевые продукты фолиевой кислоты и витаминов группы В. В девяти рандомизированных контролируемых клинических исследованиях установлены клинические эффекты снижения уровня гомоцист(е)ина в плазме – смертность от ИБС у мужчин снизилась более, чем на 15 %, у женщин на 8 % [10, 12, 25, 40, 41, 44].
Причины гипергомоцистеинемии могут быть условно разделены на врожденные (ферментная недостаточность) и приобретенные (факторы риска).
К врожденным причинам относится генетически обусловленная недостаточность ряда ферментов, блокирующих превращение гомоцистеина в метионин. К упомянутым энзимам относятся цистатион – β – синтаза, метилтетрафолатредуктаза, метионин – синтаза. У пациентов с дефицитом отдельных энзимов из перечисленных в раннем возрасте наблюдаются вегето – сосудистые и нейропсихические девиации [22].
К приобретенным причинам, т.е. факторам риска гипергомоцистеинемии, относится недостаточность питания, курение сигарет, прием некоторых лекарств, принадлежность к мужскому полу, сахарный диабет, хроническая почечная недостаточность, злокачественные новообразования молочной железы, придатков и поджелудочной железы [8, 26, 32, 50].
Нутрициальная недостаточность фолиевой кислоты и витаминов группы В, эфиров – кофакторов в метаболизме гомоцистеина является причиной умеренного повышения уровня последнего в плазме у населения США в целом [44] и признаны самым сильным предиктором повышенного уровня гомоцистеина. Компоненты табачного дыма, поступая в организм, тормозят синтез пиридоксина и тем самым снижают в плазме концентрацию витамина В6, что в свою очередь приводит к гипергомоцистеинемии [39].
Прием метотрексата, эуфиллина также приводит к повышению уровня гомоцистеина, когда дальнейшее превращение последнего тормозится при процессах метаболического распада этих лекарств [51].
Патогенетическая роль гомоцистеина в развитии ишемической болезни сердца
Основные факторы участия гомоцистеина в генезе ИБС установлены экспериментально. Высокое содержание гомоцистеина в плазме ускоряет окисление липопротеидов низкой и очень низкой плотности, тем самым усиливает развитие атеросклероза, изменяет коагуляционный каскад и повышает тромбогенность крови [23, 24]. Гомоцистеин с участием гомоцистеинтиололактона оказывает invitro и invivo прямое повреждающее воздействие на эндотелиальные клетки, приводя к нарушениям эндотелиального фактора вазодилатации, повышению давления крови на стенки сосудов и усилению имбибиции их липопротеидами [29, 47]. Повышенные уровни гомоцистеина усиливают перекисное окисление липидов через генерацию перекиси водорода и супероксидных радикалов [55]. Помимо перечисленных факторов, повышение уровня гомоцистеина стимулирует разрастание гладкомышечных клеток сосудистой стенки, усугубляя сужение кровеносного русла [48, 49].
Проведенные популяционные исследования показали, что связь между гипергомоцистеинемией и риском развития ИБС носит линейный характер с относительным риском увеличения уровня гомоцистеина в 1,3–1,4 на 5 мкмоль/л [10, 16, 41].
Другие аминокислоты влияющие на состояние сосудистой стенки.
Говоря о роли лизина в патогенезе атеросклеротического повреждения артериальных сосудов, необходимо начать с аскорбата, называемого также витамином С, который необходим для выработки коллагена, главного компонента соединительной ткани, наиболее широко представленного в организме. Витамин С участвует в анаболизме энзима лизилгидроксилазы, обеспечивающего связь лизина с полосками коллагена в структуре соединительной ткани. Недостаточность витамина С приводит к ослаблению коллагеновых нитей за счет разрыва лизиновых связей. В свою очередь ослабление коллагена приводит к поражению соединительной ткани, кожи, зубов, волос, стенок артерий. Крайняя степень выраженности недостаточности витамина С в клинике обозначается как цинга, при которой невозможно восстановление коллагена, в результате чего стенки артерий покрываются трещинами с последующими разрывами и кровотечениями, приводящими к фатальному исходу [13, 14, 30].
Лизин формирует связи между трансаминазами и пиридоксальфосфатом, так как несет в своем составе две аминогруппы: одна влияет на пептидную связь с белками трансаминаз, другая сохраняет резервы и целостность пиридоксальфосфата. Лизин участвует в образовании коллагена, укреплении сосудистой стенки, в формировании карнитина, способствует утилизации жирных кислот для энергетического потенциала клеток и сохранения иммунной реактивности организма [36, 53].
Аргинин. Потребности организма в аргинине превышают способности к его эндогенному синтезу, в связи с этим аргинин рассматривается как полузаменимая аминокислота. Аргинин служит предшественником оксида азота, влияющего на агрегацию и адгезивную способность тромбоцитов, снижая способность к тромбообразованию и уменьшая сосудистую реактивность атеросклеротически измененных артерий и способствует формированию коллагена в стенках сосудов [17, 18, 27].
В отношении двух последних аминокислот необходимы дальнейшие исследования для уточнения их изменений у больных ИБС.
Незаменимые аминокислоты: как, сколько и почему
Незаменимые аминокислоты: как, сколько и почему
О незаменимых аминокислотах и их важности для жизни человека говорят много и с удовольствием: это чуть ли не основной предмет спора между вегетарианцами и мясоедами, важный аспект идеологии культуристов, обязательный пункт в лекциях молодым родителям районных педиатров.
Но что же это на самом деле?
Белки и аминокислоты
Белки — вещества для существования организма совершенно необходимые. Они участвуют в обменных процессах, из них состоят гормоны и антитела, клетки крови и мышечные волокна. Однако кусок хорошо прожаренной говядины сам по себе никогда не станет строительным материалом для бицепса бодибилдера Коли. Сначала мясо надо переварить — то есть, при помощи пищеварительных ферментов расщепить содержащийся в мясе белок на составляющие его аминокислоты, а потом собрать из этих «кирпичиков» новые белки — уже в колиной мышце.
Незаменимых у нас. есть!
12 необходимых для жизни аминокислот человеческий организм способен синтезировать самостоятельно. А еще девять обязательно должны поступать в него с белковыми продуктами: триптофан, фенилаланин, лизин, треонин, метионин, лейцин, изолейцин, валин, аргинин.
Если этот набор в организм поступает неполным — нарушается обмен веществ, а если совсем не поступает — организм гибнет.
Кто есть кто
Триптофан используется организмом для производства серотонина — гормона хорошего настроения, участвует в синтезе витамина В3.
Лейцин помогает восстанавливать мышечную и костную ткани, стимулирует производство гормонов роста.
Изолейцин необходим для синтеза гемоглобина, выносливости организма и восстановления мышечной ткани.
Валин важен для обмена веществ в мышцах и их восстановления после травмы.
Треонин регулирует белковый обмен в организме, участвует в обмене жиров в печени и работе иммунной системы.
Лизин помогает усваиваться кальцию и азоту, участвует в производстве, антител, гормонов, ферментов, восстановлении тканей организма после повреждений.
Метионин защищает стенки сосудов от отложения холестерина, участвует в процессе пищеварения.
Фенилаланин — производное вещество для синтеза нейромедиаторов, необходимых для памяти, способности к обучению, настроения.
Аргинин стимулирует иммунную систему организма, улучшает репродуктивные функции у мужчин, способствует выведению вредных веществ из организма.
Сколько их надо?
Институт питания РАМН рекомендует около 1,5 граммов белка на 1 кг веса тела для взрослых с низкой или средней физической нагрузкой. То есть молодого человека весом 75 килограммов количество белка должно составлять от 112 граммов в день.
Правда, ценность белка в разных продуктах отличается: яйца и молоко усваиваются на 95 процентов, мясо и рыба на 70-90 процентов, мучные продукты — на 40-70 процентов, овощи и бобовые на 30-60 процентов.
Необходимое количество незаменимых аминокислот в сутки:
Аминокислота | В граммах | В животных продуктах | В растительных продуктах |
Триптофан | 1 | 130 г сыра | 2 кг моркови, 500 г фасоли |
Лейцин | 5 | 250 г говядины | 1,2 кг гречки, 400 г гороха |
Изолейцин | 3,5 | 120 г курицы | 1,4 кг ржаного хлеба, 450 г гороха |
Валин | 3,5 | 300 г говядины | 800 г макаронных изделий, 400 г гороха |
Треонин | 2,5 | 350 трески | 3 кг картофеля, 400 г фасоли |
Лизин | 4 | 200 г говядины | 1,5 кг овсяной крупы, 400 гороха |
Метионин | 3 | 300 г курицы | 1,3 кг риса, 1,8 кг гороха |
Фенилаланин | 3 | 300 г курицы | 1 кг перловой крупы, 400 г гороха |
Аргинин | 4 | 250 г курицы | 600 г риса, 250 г гороха |