Как правильно впаять конденсатор полярность
Правила проверки и пайки конденсаторов
Считается, что около половины поломок электронных плат связаны с неисправностью конденсатора, без замены которого невозможно дальнейшее функционирование схемы.
Сами эти детали могут различаться как по характеристикам, так и по габаритам; однако всех их объединяет одно – наличие основного контролируемого параметра (ёмкости).
Для того чтобы проверить установленный в схеме конденсатор (включая так называемые «электролиты») необходимо измерить именно его ёмкость. Неисправную деталь придется выпаять из схемы и затем припаять новую. Некоторые виды конденсаторов паять не надо, поскольку они крепятся сваркой или зажимами.
Проверка ёмкости
Проверить электролитические конденсаторы (так же как неэлектролитические) на предмет сохранения ими своего номинала (ёмкости) можно несколькими способами.
Но вначале необходимо ознакомиться с измерительными приборами, которые позволяют правильно оценить величину ёмкости конкретного элемента, прежде чем что-то паять.
Для измерения конденсаторов с номинальными емкостями до 20-ти микрофарад может хватить обычного мультиметра, имеющего соответствующую функцию. В качестве такого измерителя может использоваться недорогой прибор типа DT9802A.
Для оценки состояния элементов с большими номиналами потребуется специальный прибор типа «измеритель RLC». Посредством такого устройства можно проверять не только конденсаторы, но и такие распространённые элементы, как резистор и катушка индуктивности.
Проверка конденсатора цифровым мультиметром:
Часто неисправный конденсатор вздувается, и заметен без применения всяких приборов.
Простой, но не достаточно эффективный метод выявления неисправности – проверка с помощью обычного омметра, по показанию которого можно судить о целостности прокладки из диэлектрика.
Данный способ применяется обычно при отсутствии в приборе функции измерения ёмкости. Для этих целей может использоваться простейший стрелочный прибор, переведённый в режим измерения сопротивления.
При прикосновении концами щупа к ножкам исправного элемента стрелка должна немного отклониться, а затем возвратиться в сходное состояние.
Если же показания на приборе изменились, а стрелка после отклонения остановилась на каком-то конечном значении сопротивления – это значит, что конденсатор пробит и подлежит замене.
Проверка в плате
Один из самых распространённых способов проверки конденсатора без его выпаивания из схемы – включение параллельно ещё одного, заранее исправного конденсатора с известным номиналом.
Указанный метод позволяет судить об исправности элемента по индикатору прибора, показывающего суммарную ёмкость двух параллельно включённых «кондёров». При параллельном включении конденсаторов их ёмкости складываются.
При этом подходе удаётся обойтись без пайки конденсатора с целью извлечения его из схемы, в которой он шунтируется параллельно включёнными элементами (резисторами).
Однако возможности применения этого метода ограничиваются допустимыми напряжениями, действующими в данной электронной схеме и в плате тестируемого устройства.
Способ эффективен лишь при небольших величинах потенциалов, сравнимых со значениями предельных напряжений, на которые рассчитан электролитический конденсатор.
Меры предосторожности при измерении
Тем, кто решил самостоятельно проверить исправность встроенных в схему конденсаторов и затем их паять, рекомендуем придерживаться следующих правил.
Лишь при соблюдении всех этих условий удаётся сохранить контролируемое устройство в рабочем виде.
Как перепаивать конденсатор на «материнке»
Прежде чем припаять новый конденсатор, надо выпаять старый. Выпаивать повреждённый или неисправный элемент из материнской платы следует максимально быстро, чтобы не перегреть контактные площадки, которые в противном случае могут просто отвалиться.
Чтобы освободить ножки выпаиваемого элемента от припоя, следует хорошо прогреть посадочное место. Только при условии его достаточного прогрева при выпаивании конденсатора удаётся не повредить дорожки платы.
Придерживая с одной стороны небольшой по размеру конденсатор нужно постараться не обжечься, поскольку его контакт раскаляется от нагревания паяльником.
Помимо этого, необходимо быть максимально внимательным и не прикладывать слишком много усилий, так как жало паяльника может сорваться и повредить соседние детали.
Последовательность действий такая:
После удаления конденсатора остаётся свободное место, которое сначала следует аккуратно очистить от остатков пайки, воспользовавшись отсосом.
Некоторые радиолюбители используют для этого остро отточенную спичку (зубочистку), посредством которой посадочное отверстие прокалывается с одновременным прогревом остриём жала паяльника.
Ещё один способ освобождения отверстий от остатков пайки предполагает его высверливание подходящим по размеру сверлом.
По завершении подготовки места под новый элемент его ножки следует сначала сформовать соответствующим образом, так чтобы они легко входили в посадочные гнёзда. Всё, что остаётся сделать после этого – впаять его взамен сгоревшего.
Процесс пайки
Прежде чем паять, надо вставить ножки с посадочные гнезда, соблюдая полярность. Минусовая ножка детали обычно короче плюсовой, она устанавливается на «минус» площадки (обычно закрашено белым) Паять надо с обратной стороны, для этого плату переворачивают, и ножки загибают.
Припаять конденсатор будет значительно проще, если предварительно смочить контактные «пятачки» каплей флюса.
Паяльник разогревают, подносят к контактной площадке, и к ней же подносят проволочку припоя. Жалом дотрагиваются до припоя, чтобы капелька соскользнула на место пайки. Так последовательно надо паять все контакты, после чего откусить кусачками лишние торчащие ножки.
Возможно, с первого раза красиво паять не получится, и надо будет потренироваться. Обучаться методам пайки лучше заранее на ненужных деталях. После замены неисправного элемента следует попытаться включить материнскую плату и проверить её работоспособность.
Как паять резисторы
Для того чтобы запаять резистор в схему той же материнской платы или любого другого электронного изделия действуют точно так же, как в случае с конденсатором. Паять резисторы надо крайне осторожно, поскольку любое неаккуратное движение паяльником может повредить расположенные поблизости детали.
С особым вниманием следует менять переменные резисторы, у которых имеется три ножки. Для того чтобы выпаять его из платы, удобнее всего воспользоваться уже упоминавшимся ранее отсосом, посредством которого припой легко извлекается из крепёжных отверстий.
После его удаления резистор беспрепятственно достаётся из освобождённых гнёзд.
Паять миниатюрные элементы схем следует, стараясь подбирать соответствующий температурный режим нагрева паяльника, обычно это 270-300 ℃. В противном случае можно повредить как устанавливаемый элемент, так и контактную площадку, предназначенную для его монтажа.
Как определить полярность электролитических конденсаторов, где плюс и минус?
Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача — как определить полярность конденсатора.
Как определить полярность электролитического конденсатора?
Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:
Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.
По маркировке
Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.
Обозначение плюса конденсатора
На отечественных советских изделиях обозначался только положительный контакт — знаком «+». Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак «+» ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.
На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак «плюс» нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.
Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT — Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком «плюс».
Обозначение минуса
Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: «чтобы узнать, где плюс, сначала нужно найти, где минус». Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.
Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак «минус», а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.
Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность «электролита», как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.
Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.
На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.
По внешнему виду
Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.
У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.
Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача «как узнать полярность конденсатора» решается путем применения универсального тестера — мультиметра.
С помощью мультиметра
Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.
Схема подключения конденсатора к сабвуферу и зачем нужен этот конденсатор
Всех приветствую! Сегодня я покажу вам основы замены конденсаторов на материнской плате. Будет производиться замена вышедшего из строя конденсатора.
Освоив данный метод пайки, вы легко сможете ремонтировать материнские платы, блоки питания и видеокарты.
Итак, для пайки нам понадобятся следующие инструменты:
Вздутие конденсаторов вызывает повышенное напряжение, высокая температура или заводской брак.
Проверка ёмкости
Проверить электролитические конденсаторы (так же как неэлектролитические) на предмет сохранения ими своего номинала (ёмкости) можно несколькими способами.
Но вначале необходимо ознакомиться с измерительными приборами, которые позволяют правильно оценить величину ёмкости конкретного элемента, прежде чем что-то паять.
Для измерения конденсаторов с номинальными емкостями до 20-ти микрофарад может хватить обычного мультиметра, имеющего соответствующую функцию. В качестве такого измерителя может использоваться недорогой прибор типа DT9802A.
Для оценки состояния элементов с большими номиналами потребуется специальный прибор типа «измеритель RLC». Посредством такого устройства можно проверять не только конденсаторы, но и такие распространённые элементы, как резистор и катушка индуктивности.
Проверка конденсатора цифровым мультиметром:
Часто неисправный конденсатор вздувается, и заметен без применения всяких приборов.
Простой, но не достаточно эффективный метод выявления неисправности – проверка с помощью обычного омметра, по показанию которого можно судить о целостности прокладки из диэлектрика.
Данный способ применяется обычно при отсутствии в приборе функции измерения ёмкости. Для этих целей может использоваться простейший стрелочный прибор, переведённый в режим измерения сопротивления.
При прикосновении концами щупа к ножкам исправного элемента стрелка должна немного отклониться, а затем возвратиться в сходное состояние.
Если же показания на приборе изменились, а стрелка после отклонения остановилась на каком-то конечном значении сопротивления – это значит, что конденсатор пробит и подлежит замене.
Различия аккумулятора и конденсатора
Прежде чем изучать вопрос, как правильно подключить конденсатор для сабвуфера, нужно понимать для чего, поэтому давайте разберемся:
Примечание: Отличается конденсатор от аккумулятора тем, что вершина отдачи энергии в конденсаторе приходится лишь на первый миг, затем происходит резкое падение заряда, а вместе с зарядом падает и скорость его отдачи. В аккумуляторе отдача идет без скачков и падений в течение продолжительного времени.
Проверка в плате
Один из самых распространённых способов проверки конденсатора без его выпаивания из схемы – включение параллельно ещё одного, заранее исправного конденсатора с известным номиналом.
Указанный метод позволяет судить об исправности элемента по индикатору прибора, показывающего суммарную ёмкость двух параллельно включённых «кондёров». При параллельном включении конденсаторов их ёмкости складываются.
При этом подходе удаётся обойтись без пайки конденсатора с целью извлечения его из схемы, в которой он шунтируется параллельно включёнными элементами (резисторами).
Однако возможности применения этого метода ограничиваются допустимыми напряжениями, действующими в данной электронной схеме и в плате тестируемого устройства.
Способ эффективен лишь при небольших величинах потенциалов, сравнимых со значениями предельных напряжений, на которые рассчитан электролитический конденсатор.
Общие сведения
Конденсаторы предназначены для накопления электрической энергии и выдаче её при необходимости. Эти пассивные электронные компоненты разделяются на виды:
Основная характеристика элемента – ёмкость. Она обозначается буквой С и измеряется в фарадах.
Важно! Единица ёмкости 1 Ф – это очень большая величина. Применяемые на практике детали имеют емкость, измеряемую в микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ).
Графическое обозначение на схемах выглядит, как две параллельные вертикальные чёрточки, разделённые промежутком.
Устройство ёмкостного двухполюсника постоянной и переменной ёмкости
Устройство обычного конденсатора именно так и выполнено. Между двумя пластинами (обкладками) находится воздушный промежуток – диэлектрик. Значение ёмкости напрямую зависит от размера обкладок и расстояния между ними.
Работа конденсаторов переменной ёмкости основана на изменении расстояния между пластинами. Подвижные пластины – ротор, неподвижные – статор. Существуют вакуумные переменные ёмкостные элементы. Устройство помещено в колбу, из которой выкачан воздух.
Графическое обозначение на схемах
Меры предосторожности при измерении
Тем, кто решил самостоятельно проверить исправность встроенных в схему конденсаторов и затем их паять, рекомендуем придерживаться следующих правил.
Лишь при соблюдении всех этих условий удаётся сохранить контролируемое устройство в рабочем виде.
Электрические характеристики электролитических конденсаторов
Обозначение конденсаторов на схеме
Так как в них воздушный диэлектрик заменён на электролит, то его состав и качество влияют на свойства двухполюсника.
К главным параметрам электролитической детали относятся следующие характеристики:
Сюда же можно приплюсовать конструктивные особенности (размеры и способы крепления).
Как перепаивать конденсатор на «материнке»
Прежде чем припаять новый конденсатор, надо выпаять старый. Выпаивать повреждённый или неисправный элемент из материнской платы следует максимально быстро, чтобы не перегреть контактные площадки, которые в противном случае могут просто отвалиться.
Чтобы освободить ножки выпаиваемого элемента от припоя, следует хорошо прогреть посадочное место. Только при условии его достаточного прогрева при выпаивании конденсатора удаётся не повредить дорожки платы.
Придерживая с одной стороны небольшой по размеру конденсатор нужно постараться не обжечься, поскольку его контакт раскаляется от нагревания паяльником.
Помимо этого, необходимо быть максимально внимательным и не прикладывать слишком много усилий, так как жало паяльника может сорваться и повредить соседние детали.
Последовательность действий такая:
После удаления конденсатора остаётся свободное место, которое сначала следует аккуратно очистить от остатков пайки, воспользовавшись отсосом.
Некоторые радиолюбители используют для этого остро отточенную спичку (зубочистку), посредством которой посадочное отверстие прокалывается с одновременным прогревом остриём жала паяльника.
Ещё один способ освобождения отверстий от остатков пайки предполагает его высверливание подходящим по размеру сверлом.
По завершении подготовки места под новый элемент его ножки следует сначала сформовать соответствующим образом, так чтобы они легко входили в посадочные гнёзда. Всё, что остаётся сделать после этого – впаять его взамен сгоревшего.
Последовательное соединение конденсаторов: формула :
Под последовательным соединением подразумевают случаи, когда два или больше элемента имеют вид цепи, при этом каждый из них соединяется с другим только в одной точке. Зачем конденсаторы так размещаются? Как это правильно сделать? Что необходимо знать? Какие особенности последовательное соединение конденсаторов имеет на практике? Какая формула результата?
Что необходимо знать для правильного соединения?
Увы, но здесь не всё так легко сделать, как может показаться. Многие новички думают, что если на схематическом рисунке написано, что необходим элемент на 49 микрофарад, то достаточно его просто взять и установить (или заменить равнозначным).
Но необходимые параметры подобрать сложно даже в профессиональной мастерской. И что делать, если нет нужных элементов? Допустим, есть такая ситуация: необходим конденсатор на 100 микрофарад, а есть несколько штук на 47. Поставить его не всегда можно.
Ехать на радиорынок за одним конденсатором? Не обязательно. Достаточно будет соединить пару элементов. Существует два основных способа: последовательное и параллельное соединение конденсаторов. Вот о первом мы и поговорим.
Но если говорить про последовательное соединение катушки и конденсатора, то тут особых проблем нет.
Зачем так делают?
Когда с ними проводятся такие манипуляции, то электрические заряды на обкладках отдельных элементов будут равны: КЕ=К1=К2=К3. КЕ – конечная емкость, К – пропускаемое значение конденсатора.
Почему так? Когда заряды поступают от источника питания на внешние обкладки, то на внутренних может быть осуществлен перенос величины, которая является значением элемента с наименьшими параметрами.
То есть если взять конденсатор на 3 мкФ, а после него подсоединить на 1 мкФ – то конечный результат будет 1 мкФ. Конечно, на первом можно будет наблюдать значение в 3 мкФ.
Процесс пайки
Прежде чем паять, надо вставить ножки с посадочные гнезда, соблюдая полярность. Минусовая ножка детали обычно короче плюсовой, она устанавливается на «минус» площадки (обычно закрашено белым) Паять надо с обратной стороны, для этого плату переворачивают, и ножки загибают.
Припаять конденсатор будет значительно проще, если предварительно смочить контактные «пятачки» каплей флюса.
Паяльник разогревают, подносят к контактной площадке, и к ней же подносят проволочку припоя. Жалом дотрагиваются до припоя, чтобы капелька соскользнула на место пайки. Так последовательно надо паять все контакты, после чего откусить кусачками лишние торчащие ножки.
Возможно, с первого раза красиво паять не получится, и надо будет потренироваться. Обучаться методам пайки лучше заранее на ненужных деталях. После замены неисправного элемента следует попытаться включить материнскую плату и проверить её работоспособность.
Надежность электролитических конденсаторов
ЭК – пассивный элемент и работает долго, если не нарушать определённых условий:
Конденсаторы. Назначение. Правила монтажа
Состоит из 2 или более токопроводящих обкладок, разделённых диэлектриком. Конденсаторы используют для накопления электрической энергии, что определяется его электрической ёмкостью. По конструкции конденсаторы делят на:
1. постоянные(постоянная ёмкость)
2. подстрочные (ёмкость которых изменяется в небольших пределах.3. переменные (емкость которых изменяется в значительных пределах)
По типу диэлектрика конденсаторы могут быть бумажными, слюдяными, керамическими, пленочными. В цепях постоянного напряжения применяются электролитические конденсаторы. Основные параметры:
допустимые отклонения от номинала
температурный коэффициент емкости
номинальное рабочее напряжение
тангенс утла диэлектрических потерь К — конденсаторы постоянной ёмкости КП — конденсаторы переменной ёмкости
Требования к пайке и монтажу – общие
41.Катушки индуктивности. Назначение. Правила монтажа
1. номинальная индуктивность (измеряется в Гн)
2. допустимые отклонения от номинала (в %)
3. добротность катушки, по которой определяются потери энергии
4. межвитковая ёмкость катушки, которая должна быть как можно меньше
При монтаже катушка должна быть прочно закреплена на печатной плате или другой конструкции. Каркас катушки крепят механически. Катушки малых размеров крепят на клей. Во избежание повреждения тонких обмоточных проводов предусматривают дополнительные штырьки для их закрепления.
42. Полупроводниковые приборы, применяемые в производстве РЭА
1. Диоды. Элементы с одним p-n переходом. Применяются для выпрямления, стабилизации тока и напряжения.
2. Биполярные транзисторы. Имеют два p-n перехода. Используются для усиления и генерации электрических сигналов.
3.Полевые транзисторы. Используют в качестве усилителей и генераторов на высоких частотах.
4. тиристоры. Имеют три и более p-n перехода. Применяются в качестве быстродействующих переключателей.
5. Фотоэлектрические приборы. Используется эффект взаимодействия светового излучения и электрических зарядов. Применяются в системах автоматики, в оптоволоконной технике и т.д.
6. Полупроводниковые микросхемы. Все элементы в них выполнены в объеме или на поверхности полупроводникового кристалла.
43.Полупроводниковые детали. Особенности монтажа.
Полупроводники и микросхемы чувствительны к воздействию статического электричества и высоких температур.
Требования к пайке микросхем.
Микросхемы устанавливают в соответствии с маркировкой первого вывода, который должен совпадать с «ключом» на печатной плате. Микросхема устанавливается параллельно поверхности платы до упора выводов. Выводы микросхем при печатном монтаже не подгибают и не подрезают. Микросхемы в процессе пайки необходимо защитить от влияния высоких температур. Для этого пайку выводов производят через один или в шахматном порядке. Время пайки 2-Зс. Повторную пайку производить только после остывания предыдущей через 10-15с.
Для защиты микросхем от статического электричества пайку производить в антистатическом браслете.
Защита микросхем и полупроводниковых деталей от воздействия высоких температур
Для защиты от влияния высоких температур необходимо:
1. использовать паяльник мощностью не более 40 Вт (оптимально 20-25Вт )
2. температура пайки должна быть не более 250 градусов.
3. время пайки 2-Зс. Повторную пайку производить только после остывания предыдущей через 10-15с
4. для пайки диодов и транзисторов применяются теплоотводы, которые устанавливают на вывод детали между корпусом и пайкой. В качестве теплоотвода можно использовать пинцет без насечки или зажимы с медными насадками
5. во избежание перегрева микросхем пайку выводов производят через I или в шахматном порядке
46. Защита микросхем и полупроводниковых деталей от воздействия статического электричества
Для зашиты от статического электричества необходимо:
1. хранить микросхемы и полупроводники в таре завода изготовителя на заземлённых стеллажах. Так же переносить можно только в заводской таре или в фольге
2. рабочее место должно быть оборудовано антистатической пластиной
3. жало паяльника должно быть заземлено
4. прежде чем приступать к работе с микросхемами, монтажник должен одеть антистатический браслет. Провод заземления присоединяют к клемме заземления на рабочем месте (плотно прикручивается или используется штекер с фиксацией)
5. рабочие места периодически протирают антистатическими пастами
47. Коммутирующие устройства. Требования к монтажу
К коммутационным устройствам относятся:
1. выключатели и переключатели. Назначение коммутация электрических цепей с целью включения или переключения, чтобы обеспечить той или иной режим работы. Соединение происходит за счёт механического воздействия. По механизму замыкания-размыкания контактов существует 3 вида переключателей:
· нажимные — кнопки и клавиши, которые могут быть с фиксацией контактов и без фиксации
· перекидные типа «тумблер». Тумблеры одно, двух и четырёхполюсные. В слаботочных цепях используют микротумблеры. При монтаже тумблеров необходимо предусмотреть, чтобы положение «включено» было вверх
· галетные, которые одновременно могут коммутировать несколько цепей
Основными параметрами всех переключателей является:
2. мощность контактов (указывают предельно допустимые точки и напряжения)
3. чёткость фиксации характеризуется контактами
2. Реле — коммутирующее устройство, в котором соединение контактов происходит под действием электромагнитного поля.
Реле подразделяют на:
· Нейтральные реле, которые срабатывает только при наличии постоянного тока в обмотке.
· Поляризованное реле имеет общий якорь и расположенные по обе стороны контакты. Срабатывает в ту или другую сторону в зависимости от направления тока в обмотке.
· Реле герконовое. Это электромеханические реле, действие которых основано на воздействии магнитного поля неподвижной обмотки на ферромагнитный элемент герметизированным магнитоуправляемым контактом.
Герконы имеют малое контактное сопротивление, высокую чувствительность, безыскровую коммутацию контактов
Основные параметры реле: токи и напряжения срабатывания, токи и напряжения отпускания, время срабатывания.
48. Разъёмы, штекеры. Правила монтажа
Разъём — это электромеханическое устройство, предназначенное для соединения электрических цепей между блоками и ячейками с помощью кабелей, жгутов и печатного монтажа. Разъём — это соединение двух сборочных единиц (вилки и розетки), в изоляционных корпусах которых закреплены штыри и гнёзда, образующие контактную пару. По назначению разъёмы могут быть ВЧ и НЧ, по применению — межблочные и внутриблочные, по форме — круглые и прямоугольные. Основные параметры разъёмов:
1. надёжность и переход сопротивления контактной пары
2. рабочее напряжение и максимальный рабочий ток разъёма
Штекер– однополюсная вилка. Используется для коммутации электрических цепей. Могут быть с фиксацией для повышения надежности соединения и без фиксации.
Монтаж разъемов и штекеров зависит от вида контактов, к которым припаивают провода.
49.Особенности монтажа двухсторонних печатных плат.
На двухсторонних печатных платах токоведущие проводники расположены на обеих сторонах основания. Для соединения печатных проводников отверстия на плате металлизируют. Поэтому существуют некоторые особенности монтажа:
· при двухстороннем монтаже не допускается укладывать детали на печатные проводники. Корпус детали должен находиться на расстоянии 0,5- 1,5 мм от печатных проводников
· на двухсторонних печатных платах все отверстия металлизированы. При пайке металлизированных отверстий припой должен заполнять отверстие на всю толщину платы. Припой должно быть видно с лицевой стороны. Не допускается затекание флюса под корпуса элементов и вытекание припоя по выводу
· двухсторонний монтаж допускается паять без подгибки выводов
50. Контроль объёмного монтажа
Объёмный монтаж. Обеспечивает соединения различных электро и радиоэлементов, узлов и модулей радиоэлектронной аппаратуры в единую конструкцию при помощи проводов, жгутов, разъёмов, кабелей. В процессе контроля объемного монтажа необходимо проверить:
· Качество обработки монтажных проводов (не должно быть повреждения изоляции провода и обрыва отдельных проволочек у многожильных проводов). Волокнистая изоляция или экранирующая оплётка должна быть закреплена при помощи нитяного бандажа, клея или изоляционной трубки.
· Качество закрепления монтажных проводов (тонкие провода – 1 оборот, сечением более 0,35 мм 2 — ѕ оборота, расстояние от изоляции до пайки 0,5 – 2 мм). монтажные провода должны иметь запас на 1,2 пайки.
Если расстояние между токоведущими контактами менее 2мм, то на выводы надевают изоляционную трубку.
· Качество пайки. Пайка должна быть ровной, глянцевой, без пор и посторонних вкраплений. Пайка должна быть «скелетной», то сеть под припоем должен быть виден контур соединяемых выводов или проводов. Должна быть полностью исключена возможность получения «ложной» пайки, при которой существует видимость пайки, но отсутствует электрический контакт. Такие пайки получаются в результате некачественной подготовки проводов
51. Антистатический браслет. Необходимость применения.Правила эксплуатации.
Применяется для защиты микросхем и полупроводниковых элементов от влияния статического электричества. Браслет надевают на руку, которой берут элементы.
Антистатический браслет представляет собой металлическую пластину, которая плотно прижимается к руке кожаным или текстильным ремешком.
Металлическая пластина закрыта крышкой, под которой находится резистор 1Мом (устанавливается между проводом подсоединения и металлической пластиной). Браслет соединяется с клеммами заземления многожильным изолированным проводом. 1 раз в 6 месяцев браслеты аттестуют на пригодность. Проверяется величина сопротивления, исправность провода и надежность контактов.
Условия хранения электролитических конденсаторов
Срок службы ёмкостных элементов зависит от условий их хранения. На работоспособность ЭК влияют такие факторы, как:
Так как в составе элементов находятся вещества, которые вступают друг с другом в реакцию в процессе работы, то повышение Т0С даже на 10-150С ускоряет процессы и сокращает срок службы элементов. Испарение электролитического наполнителя уменьшает С и увеличивает tgδ (тангенс угла потерь).
Условия работы
Необходимость создания определённого запаса относительно Uном (0,5…0,6 его значения) вызвана тем, что, нагреваясь, электролит выделяет газы. Длительная работа при повышенном напряжении будет вызывать нагрев, а скапливающиеся газы разорвут корпус.
Если схема включения позволит электролитическому двухполюснику работать в цепи переменного тока, то стоит обратить внимание на рабочую частоту 50 Гц. При работе на высоких частотах уменьшают подаваемое на него напряжение.
Осторожно. ЭК большой ёмкости рассчитаны на длительное сохранение заряда на своих обкладках. У элементов с малым током утечки этот разряд долгое время будет равен номинальному значению. Поэтому для работы с конденсатором необходимо разрядить его принудительно.
Выводы элемента соединяются между собой при помощи резистора в 1 Мом (0,5 Вт). Если закоротить выводы отвёрткой, можно испортить элемент.
Рабочая температура, эквивалентное последовательное сопротивление (ESR) и срок службы
Верхний предел рабочей температуры двухполюсников колеблется в диапазоне 60-800С. При её значении более 80 градусов требуется обязательное охлаждение конденсатора. Для того чтобы расширить границы, в элементы, где присутствует жидкий электролит, добавляют этиленгликоль.
К сведению. Верхний предел в разных случаях достигает 100-125 0С и, если удаётся избежать теплового пробоя, до 500-6000С. Однако это чревато снижением срока службы ёмкостных элементов.
Высокие температуры высушивают электролит, в результате чего падает ёмкость, и возрастает внутреннее эквивалентное сопротивление ESR.
При быстром старении конденсатора сопротивление ESR стремительно увеличивается. Для надёжной работы двухполюсника оно должно быть как можно ниже.
В рабочем режиме, когда через конденсатор проходят токи на разнящихся между собой частотах, ESR изменяется с частотой. В этом случае полная мощность потерь будет равняться сумме мощностей потерь на каждой из частот.
Характерные признаки неисправности электролитов
К таким признакам можно отнести:
Внешние признаки неисправности электролитических конденсаторов:
Также высокочастотные пульсации вредят электролитам. Поэтому чаще всего они выходят из строя в блоках питания, поскольку именно там много пульсаций.
Правила работы с электролитами
Внимание! Перед тем, как прикоснуться к плате неисправного источника, убедитесь, что емкости разряжены. Даже если неисправен преобразователь, а не электролит, то конденсаторы могут быть заряжены. Им попросту некуда девать свой заряд. Поэтому первым делом аккуратно и не касаясь щупом мультиметра, измерьте емкости с высоким напряжением. Если они заряжены, разрядите их с помощью лампочки.
Советы перед сборкой оборудования
Конденсатор не должен иметь внешних повреждений: трещин, вздутия корпуса и потёков электролита. Полярность выводов должна быть определена правильно. Ориентироваться необходимо на маркировку полярности, наносимую на корпус непосредственно возле выводов. Знак полярности может быть отмечен на вертикальной полосе, по цвету отличной от расцветки корпуса.
Разогрев выводов при пайке должен быть кратковременным, во избежание перегрева детали.
Если на плате есть обозначенные места для установки элемента, то заштрихованная половинка окружности – место для пайки плюсового вывода.
Полярность, обозначенная на плате