Как появилось пространство и время

Как появилось время и что было до начала вселенной? Теория петлевой квантовой гравитации

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Исходя из теории петлевой квантовой гравитации пространство не такое уж непрерывное и гладкое. В квантовых масштабах оно является весьма сложной структурой.

Вопросы о том, как появилось время и что было до него, редко обсуждаются учеными, потому что пока не появилось адекватной теории, которая могла бы на них ответить. Но петлевая квантовая гравитация позволяет отследить процесс эволюции Вселенной вплоть до самого ее начала и даже увидеть, что было до Большого взрыва, заодно выяснить, как появилось само время.

Ученым же этого оказалось мало, и они захотели понять, как произошел сам процесс Большого взрыва. Поэтому сейчас многие физики заняты тем, что предпринимают попытки создания теории, которую можно было бы применить к Большому взрыву. Так как самой главной силой в первые моменты жизни Вселенной была гравитация, то принято считать, что построить ту самую теорию можно только опираясь на другую пока не построенную теорию квантовой гравитации.

По началу физики считали, что квантовую гравитацию можно описать с помощью теории суперструн, однако данная теория сама подверглась жесткой критике. Поэтому исследователи переключились на другие способы описания квантовой гравитации, и самым популярным из них на данный момент является петлевая квантовая гравитация.

Исследования в области петлевой квантовой гравитации, привели к воистину впечатляющим результатам. Оказалось, что квантовые явления препятствуют образованию сингулярности. Теперь можно проследить за всем процессом Большого взрыва и даже увидеть то, что было до него.

Петлевая квантовая гравитация отличается как от стандартных теорий физики, так и от теории суперструн. Многомерные мембраны, находящиеся в пространстве и времени, являются главными основополагающими теории суперструн, однако, как возникло это пространство-время, сотканное из струн, теория не объясняет.

Объектами петлевой теории гравитации являются квантовые пространственные ячейки, скрепленные друг с другом. Законы их состояния определяются полем, в котором они существуют. Величина поля играет роль внутреннего времени для этих ячеек. Переход от более слабого поля к сильному устроен так же, как влияние прошлого на будущее. Этот закон гласит о том, что для огромной вселенной вдалеке от сингулярности ячейки плотно соединяются друг с другом, составляя сплошное линейное пространство-время.

Некоторые исследователи берут на себя смелость утверждать, что всего выше описанного вполне достаточно для ответа на вопрос: что происходит со Вселенной во время приближения к сингулярности. Ведь решения соответствующих уравнений показывают, что при таком сжатии вселенной пространство попросту рассыпается. При этом квантовая гравитация не дает ему рассыпаться полностью, уменьшив объем и массу до нуля, а останавливает процесс и снова начинается расширение. Проследить этот процесс можно в обоих направлениях времени, и это показывает, что Большому взрыву предшествовало еще одно событие, процесс сжатия, возможно некий коллапс предыдущей вселенной. Однако все свойства и явления предыдущей вселенной вовсе не исчезают, а передаются в нашу.

Все проделанные учеными вычисления основываются на слегка упрощающих предположениях об универсальных полях. Общие результаты, конечно, останутся и без таких предположений, однако, они тоже все еще нуждаются в проверке.

Источник

Спросите Итана №63: рождение пространства и времени

Если что-то существовало до Большого взрыва, что это может значить для рождения нашей Вселенной?

Ты можешь попытаться соврать самому себе. Ты можешь говорить себе, что ты вложил всё свое время и все свои усилия. Но ты знаешь правду — и я её знаю.
Дж. Дж. Уатт

Полвека прошло с тех пор, когда крупнейшие предсказания теории Большого взрыва были подтверждены, и навсегда изменили наше представление о Вселенной. Вместо концепции о вечной и бесконечной Вселенной у нас теперь есть понимание, что всё, что мы можем наблюдать, существовало примерно 14 миллиардов лет космического времени, а Солнце и Солнечная система существуют всего лишь треть от этого срока. Что и делает вопрос Себастьяна, заданный в нашей колонке, таким интересным:

Чтобы полностью ответить на вопрос, нам нужно рассмотреть три вещи. Первая – что мы подразумеваем под пространством и временем.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Вы привыкли к обычному понятию пространства – длина, ширина, высота – и времени, которые вы можете представлять себе просто, как ответы на вопросы «когда» и «где». И это не такое уж и плохое представление – но есть две особенности пространства и времени, о которых вам нужно знать, и которые могут показаться не такими интуитивными. Понадобился Эйнштейн, чтобы разобраться в этом, и даже он не справился бы без посторонней помощи!

Первое – пространство и время не две отдельные сущности, как считал Ньютон. Если вы двигаетесь в пространстве, ваше движение меняет течение времени для вас, а если два человека двигаются в пространстве с разными скоростями – они по-разному воспринимают как своё время, так и время, проходящее для другого.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Способ, которым проще всего описать происходящее, был придуман даже не Эйнштейном, а математиком Германом Минковским. Нужно рассматривать объединённое пространство-время, где вместо трёх пространственных и одного временного измерения существует четырёхмерная сущность пространства-времени. В 1908 году Минковский писал следующее:

Взгляды на пространство и время, которые я хочу изложить вам, выросли на почве экспериментальной физики, и в этом их сила. Они радикальны. Следовательно, пространству самому по себе и времени самому по себе суждено исчезнуть в тенях, и только лишь объединение их двоих сохранится в роли независимой реальности.

И хотя Эйнштейн поначалу противился такой революции, принятие им новой концепции привело к ещё большему открытию.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Суть не только в том, что пространство и время объединены в четырехмерную ткань пространства-времени, но и в том, что кривизна этой ткани определяется присутствием материи и энергии. Как движение через пространство-время влияет на то, как по-разному оценивают наблюдатели проходящее время и расстояния, так и присутствие материи и энергии (и искривления в общем случае) влияют на восприятие пространства и времени.

В наиболее экстремальных примерах концентрации материи и энергии – сингулярностях – понятия пространства и времени нарушаются.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Наиболее привычно для нас представлять сингулярность как центр чёрной дыры, где становится достижимой произвольная (а возможно, и бесконечная) плотность материи и энергии. В этом случае представление о пространстве-времени нарушается, поскольку уравнения Эйнштейна дают бессмысленные результаты.

Второй вопрос, который необходимо рассмотреть – схема Большого взрыва.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Сегодняшняя Вселенная представляется нам относительно холодной и пустой, за исключением мест, где сконцентрирована материя, звёзды, планеты, и жизнь, сформировавшиеся за миллиарды лет её существования. Вся эта космическая пирамида, от субатомных масштабов вплоть до огромных галактических кластеров, существует благодаря гравитации, электромагнетизму и ядерным силам.

Отправившись назад во времени, мы обнаружим, что всё в прошлом было более равномерно с гравитационной точки зрения, а Вселенная была горячее (длины световых волн были короче) и плотнее, из-за того, что пространство-время постоянно расширялось.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Мы можем отправиться назад во времени сколь угодно далеко, до всё более высоких энергий, больших температур и увеличивающихся плотностей. Например, до времени, когда:

ещё не сформировались звёзды и галактики, и Вселенная была морем тёплых нейтральных атомов;
было слишком горячо для формирования нейтральных атомов, и Вселенная представляла собою ионизированную плазму из ядер и электронов;
было слишком горячо для формирования ядер, и были лишь свободные протоны и нейтроны;
было настолько горячо, что в результате столкновений частиц возникали пары материя/антиматерия для всех известных частиц.

Можно захотеть пойти ещё дальше в прошлое, к произвольной плотности, температуре, и даже к тому событию, которое соответствует сингулярности: моменту, когда вся Вселенная была заключена в одной точке.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

И если бы это было так, то пространство и время начались бы оттуда – поскольку не существует никакого «где» вне пространства, и «когда» вне времени. Но приняв такое положение за реальное начало Вселенной, мы столкнулись бы с огромным количеством загадок, которые нельзя было бы разгадать. Сейчас физика учит нас, что нельзя двигаться сколько угодно далеко в прошлое, и что состояние инфляции – экспоненциально расширяющегося пространства-времени, с энергией, присущей самому пространству – предшествовало и привело к тому горячему и плотному состоянию, которое мы называем Большим взрывом.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Ведь именно в тот момент, когда энергия, привязанная к самому пространству, преобразовывается в материю и излучение, и прекращается экспоненциальное расширение, что приводит к появлению такой Вселенной, какой по нашим представлениям она была в прошлом.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

И мы приходим к третьему вопросу, памятуя о сингулярностях и Большом взрыве: если Вселенная до Большого взрыва, во время инфляции, состояла из экспоненциально расширяющегося пространства-времени, откуда это пространство-время взялось?

Как ни странно, есть три интуитивных варианта ответа:

у Вселенной могло быть начало, до которого не было ничего;
она могла существовать вечно, как бесконечная линия, простирающаяся в двух направлениях;
она может быть цикличной, как окружность, повторяющаяся снова и снова.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Если обратиться к представлению о Большом взрыве без предшествующей инфляции, то все факты говорят о первом варианте: Вселенная родилась в “момент”, когда у неё была бесконечная энергия и в этот же “момент” началось пространство-время.

Но инфляция меняет всё. Вместо сингулярности с t = 0, в момент возникновения Большого взрыва, возникает Вселенная, существующая в состоянии инфляции, когда она экспоненциально расширяется в течение неустановленного времени.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время
Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Синяя и красная линия представляют «традиционный» вариант Большого взрыва, когда всё начинается в момент t = 0, включая и пространство-время. Но в варианте с инфляцией (жёлтый) мы не добираемся до сингулярности. Вместо этого пространство может быть сколь угодно малым, а время можно отматывать назад бесконечно.

Такой сценарий больше подходит ко 2-му варианту, то есть вечной Вселенной. Но оказывается, и тут есть подвох. Согласно одной из теорем, инфляционная Вселенная не может существовать вечно, и должна была начаться из сингулярности.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

К сожалению, среди них есть и происхождение инфляционного пространства-времени.

Неизвестно, значит ли всё вышеизложенное, что инфляционная Вселенная не могла существовать вечно, или что наши законы физики неприменимы к этому вопросу, или что у неё было начало, или что она цикличная… Возможно даже, что и время циклично, и циклы меняются с каждой итерацией. И, несмотря на весь наш прогресс, у нас до сих пор есть три этих возможности, которые философы и теологи обсуждают уже столько времени: время конечно, время бесконечно, время циклично.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Знаем мы лишь то, что если в прошлом и была сингулярность, она не имеет ничего общего с нашим горячим и Большим взрывом, до которого можно отследить каждую частицу материи и энергии в наблюдаемой Вселенной.

Если мы не придумаем способ получить информацию о том времени, когда наблюдаемая Вселенная существовала в каком-то допустимом смысле, ответ на этот вопрос может оказаться недостижимым. Не каждый вопрос в колонке «Спросите Итана» получит однозначный ответ – мы обсуждаем лишь то, что известно на основании собранных данных.

Источник

Величайшая загадка Вселенной: из чего состоит пространство-время?

«Из чего сделано пространство-время?», задается вопросом физик Арон Уолл из Стэнфордского института теоретической физики. В течение последних нет физики по-разному пытаются осмыслить загадку пространства-времени, рассматривая его не просто как пустой фон, на котором разворачивается история Вселенной, а скорее как поток квантовой информации, перетекающей из одной точки в другую. Уолл и его коллеги все больше убеждаются, что такое представление пространства-времени может быть ключом к разработке теории, которая сможет объяснить гравитацию с использованием принципов квантовой механики. Об этом физики мечтают еще со времен Альберта Эйнштейна.

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Пространство и время — это две, наверное, самые неуловимые вещи в мире.

Петр Зенчиковский из Института ядерной физики Польской академии наук задается таким же вопросом, что и Уолл. Является ли пространство-время абсолютной, неизменной, вечно и всегда присутствующей ареной, на которой разворачиваются события? Или, возможно, это динамическое создание, возникающее как бы на определенном масштабе расстояний, времени или энергии? Упоминание абсолюта не приветствуется в современной физике. Считается, что пространство-время эмерджентно, то есть возникает откуда-то. Непонятно только, откуда.

Что такое пространство-время?

Большинство физиков считает, что структура пространства-времени формируется непонятным образом в пределах масштабов Планка, то есть на масштабах, близких к одной триллионной от триллионной доли метра. Однако есть некоторые убеждения, которые ставят под вопрос однозначность такого толкования. Существует немало аргументов в пользу того факта, что возникновение пространства-времени может происходить в результате процессов, которые намного ближе к нашей реальности: на уровне кварков и их конгломератов.

«Математика — это одно, отношение с реальным миром — другое», говорит Зенчиковский. «Например, величина массы Планка кажется подозрительной. Можно было бы ожидать, что у нее будет значение, более характерное для мира квантов. Между тем, оно соответствует примерно 1/10 массы блохи, которая определенно является классическим объектом».

Большинство физиков склонны предполагать, что пространство-время создается на планковских масштабах, на расстояниях, близких к одной триллионной триллионной доли метра (

Вопросы о природе пространства и времени озадачивали человечества с древних времен. Может ли время быть отдельным от материи, создающим «контейнер» для движений и событий, которые происходят при участии частиц, как это предполагал Демокрит в 5 веке до н.э.? Или, может быть, все это атрибуты материи и не могут без нее существовать, как предположил Аристотель столетием позже?

Несмотря на то, что прошла уже тысяча лет с тех пор, эти вопросы до сих пор не решены. Более того, оба подхода — несмотря на их очевидное различие — глубоко укоренились в столпах современной физики. В квантовой механике события происходят на жесткой арене с равномерно текущим временем.

Между тем, в общей теории относительности вещество деформирует упругое пространство-время (растягивает и скручивает его), а пространство-время сообщает частицам, как двигаться. Другими словами, в одной из теорий актеры выходят на уже подготовленную сцену, чтобы играть свои роли, а в другой они создают сцену во время представления, что, в свою очередь, влияет и на их поведение.

«В настоящее время мы сперва стремимся построить квантованное дискретное пространство-время и затем «населить» его дискретной материей. Но если пространство-время будет продуктом кварков и адронов, зависимость будет обратной: дискретное свойство материи должно усиливать дискретность пространства-времени», говорит Зенчиковский и добавляет: «Планк опирался на математику. Он хотел создать единицы из мельчайших возможных постоянных. Но математика это одно, а отношение с реальным миром другое. Значение планковской массы кажется подозрительным. Можно было бы ожидать, что у нее будет более подходящая характеристика для мира квантов. Но она соответствует примерно 1/10 массы блохи, которая определенно является классическим объектом».

Как появилось пространство и время. Смотреть фото Как появилось пространство и время. Смотреть картинку Как появилось пространство и время. Картинка про Как появилось пространство и время. Фото Как появилось пространство и время

Смотришь в космос и не понимаешь, где у него конец

«Игры с постоянными могут быть рискованными, потому что многое зависит от того, какие константы мы выбираем. К примеру, если бы пространство-время действительно являлось продуктом кварков и адронов, то его свойства, включая скорость света, также должны быть эмерджентными. А это означало бы, что скорость света не может быть среди основных констант», отмечает Зенчиковский.

Другим фактором в пользу образования пространства-времени в масштабе кварков и адронов являются свойства самих элементарных частиц. Стандартная модель, например, не объясняет, почему существует три поколения частиц, откуда берутся их массы или почему существуют так называемые внутренние квантовые числа, которые включают изоспин, гиперзаряд и цвет. В картине, представленной профессором Зенчиковским, эти значения могут быть связаны с определенным шестимерным пространством, созданным положением частиц и их импульсами. Построенное таким образом пространство одинаково уважает положение частиц (материя) и их движения (процессы). Выясняется, что свойства масс или внутренние квантовые числа могут быть следствием алгебраических свойств шестимерного пространства. Более того, эти свойства также объясняют невозможность наблюдать свободные кварки.

«Возникновение пространства-времени может быть связано с изменениями в организации материи, происходящей в масштабе кварков и адронов, в более первичном шестимерном фазовом пространстве. Однако не совсем понятно, что дальше делать с этой картиной. Каждый последующий шаг потребует выхода за пределы того, что мы знаем. И мы даже не знаем правил игры, по которым Природа играет с нами, нам все равно приходится их угадывать. Однако представляется разумным, что все конструкции начинаются с материи, потому что она является физически и экспериментально доступной. В этом подходе пространство-время будет лишь нашей идеализацией отношений между элементами материи», суммирует профессор Зенчиковский.

Согласитесь с ним? Расскажите в нашем чате в Телеграме.

Источник

Происхождение пространства и времени

Многие исследователи считают, что физика не будет законченной, пока не сможет объяснить поведение пространства, времени и их происхождение.

«Представьте себе, однажды вы просыпаетесь и понимаете, что живете внутри компьютерной игры. Если это так, тогда все вокруг, весь трехмерный мир — это всего лишь иллюзия, информация, закодированная на двумерной поверхности», — Марк Ван Раамсдонк (Mark Van Raamsdonk)физик, Университет Британской Колумбии, Ванкувер, Канада

Это сделало бы нашу Вселенную с ее тремя пространственными измерениями, своего рода голограммой, источник которой находится в низших измерениях.

Этот «голографический принцип» довольно необычен для теоретической физики. Но Ван Раамсдонк является членом небольшой группы исследователей, которые считают, что это вполне нормально. Просто ни один из столпов современной физики: ни общая теория относительности, которая описывает гравитацию как искривление пространства и времени, ни квантовая механика, не могут объяснить существование пространства и времени. Даже теория струн, описывающая элементарные нити энергии, не может этого сделать.

Ван Раамсдонк и его коллеги убеждены, что необходимо дать конкретное представление понятий пространства и времени, пусть даже такое во многом нелепое, как голография. Они утверждают, что радикальное переосмысление реальности является единственным способом объяснить, что происходит, когда бесконечно плотная сингулярность в центре черной дыры искажает пространство-время до неузнаваемости. Оно так же поможет объединить квантовую теорию и общую теорию относительности, а этого теоретики пытаются добиться уже не одно десятилетие.

«Все наши опыты свидетельствуют о том, что вместо двух полярных концепций реальности, должна быть найдена одна всеобъемлющая теория», — Абэй Аштекар (Abhay Ashtekar)физик, Университет штата Пенсильвания, Юниверсити-Парк, штат Пенсильвания

Гравитация как термодинамика

Но ради чего все эти попытки? И как найти то самое «сердце» теоретической физики?

Ряд поразительных открытий, сделанных в начале 1970-х годов, натолкнули на мысль, что квантовая механика и гравитация тесно связаны с термодинамикой.

В 1974 году Стивен Хокинг из Кембриджского университета в Великобритании показал, что квантовые эффекты в космосе вокруг черной дыры могут привести к выбросу излучения высокой температуры. Другие физики быстро отметили, что это явление является довольно общим. Даже в совершенно пустом пространстве астронавт, испытывающий ускорение, будет ощущать вокруг себя тепло. Эффект слишком мал, чтобы его можно было заметить в случае с космическим кораблем, но само по себе предположение казалось фундаментальным. И если квантовая теория и общая теория относительности правильны (что подтверждается экспериментами), то излучение Хокинга действительно существует.

За этим последовало второе ключевое открытие. В стандартной термодинамике объект может излучать тепло только за счет уменьшения энтропии, меры количества квантовых состояний внутри него. То же самое и с черными дырами; еще до появления доклада Хокинга в 1974 году Джейкоб Бекенштейн (Jacob Bekenstein), который в настоящее время работает в Еврейском университете в Иерусалиме, предположил, что черные дыры обладают энтропией. Но есть разница. В большинстве объектов энтропия пропорциональна числу атомов объекта, а значит и объему. Но энтропия черной дыры пропорциональна площади ее горизонта событий, границы, из которой даже свет не может вырваться. Как будто в этой поверхности закодирована информация о том, что внутри (прям как двумерные голограммы кодируют трехмерное изображение).

В 1995 году Тед Джекобсон (Ted Jacobson), физик из Мэрилендского университета в Колледж-Парке, скомбинировал эти два открытия и предположил, что каждая точка в пространстве находится на крошечном «горизонте черной дыры», который также подчиняется пропорции энтропия-площадь. Даже уравнения Эйнштейна удовлетворяют этому условию (естественно, физик оперировал термодинамическими понятиями, а не пространством-временем).

«Возможно, это позволит нам узнать больше о происхождении гравитации», — говорит Якобсон. Законы термодинамики являются статистическими, поэтому его результат позволяет предположить, что гравитация – явление также статистическое (макроскопическое приближение к невидимым компонентам пространства-времени).

В 2010 году эта идея шагнула еще дальше. Эрик Верлинде (Erik Verlinde), специалист по теории струн из университета Амстердама, предположил, что статистическая термодинамика пространственно-временных составляющих могла дать толчок закону Ньютона о гравитационном притяжении.

В другой работе Тану Падманабан (Thanu Padmanabhan), космолог из Межвузовского центра астрономии и астрофизики в Пуне, показал, что уравнения Эйнштейна можно переписать в форме, идентичной законам термодинамики, как и многие другие альтернативные теории тяжести. В настоящее время Падманабан работает над обобщением термодинамического подхода, пытаясь объяснить происхождение и величину темной энергии, таинственной космической силы, ускоряющей расширение Вселенной.

Подобные идеи проверить эмпирически крайне сложно, но не невозможно. Чтобы понять, состоит ли пространство-время из отдельных компонентов, можно провести наблюдение за задержкой фотонов высоких энергий, путешествующих к Земле от далеких космических объектов, таких как сверхновые и γ-всплески.

Сверхновые — звезды, блеск которых увеличивается на десятки звездных величин за сутки. В течение малого периода времени взрывающаяся сверхновая может быть ярче, чем все звезды ее родной галактики.
Существует два типа cверхновых: Тип I и Тип II. Считается, что Тип II является конечным этапом эволюции одиночной звезды с массой М*=10±3Мsun. Тип I связан, по-видимому, с двойной системой, в которой одна из звезд белый карлик, на который идет аккреция со второй звезды.

Гамма-всплески – выбросы гамма-излучения, связанные с самыми высокоэнергетическими взрывами. Изначальное гамма-излучение испускается в течение времени от десятка миллисекунд до нескольких минут, за ним следует послесвечение на более длинных волнах.
Большая часть гамма-всплесков связана с образованием нейтронных звезд и черных дыр после взрывов сверхновых, самые короткие всплески возникают при столкновении двух нейтронных звезд.

В апреле Джованни Амелино-Камелия (Giovanni Amelino-Camelia), исследователь квантовой гравитации из Римского Университета, и его коллеги обнаружили намеки именно на подобные задержки фотонов, идущих от γ-всплеска. Как говорит Амелино-Камелия, результаты не являются окончательными, но группа планирует расширить свои поиски, чтобы зафиксировать время движения нейтрино высоких энергий, создаваемых космическими событиями.

Другие физики концентрируются на лабораторных испытаниях. В 2012 году, например, исследователи из Венского университета и Имперского колледжа Лондона провели настольный эксперимент, в котором микроскопические зеркала перемещаются при помощи лазеров. Они утверждали, что пространство-время в Планковском масштабе приведет к изменению света, отраженного от зеркала.

Петлевая квантовая гравитация

Даже если термодинамический подход верен, он все равно ничего не говорит о фундаментальных составляющих пространства и времени. Если пространство-время представляет собой ткань, то каковы ее нити?

Один из возможных ответов вполне буквален. Теория петлевой квантовой гравитации, которую выдвинул в середине 1980-х Аштекар и его коллеги, описывает ткань пространства-времени как растущую паутину из нитей, которые несут информацию о квантованных площадях и объемах областей, через которые они проходят. Отдельные нити сети должны, в конечном итоге, образовывать петли. Отсюда и название теории. Правда, она не имеет ничего общего с гораздо более известной теорией струн. Последние движутся вокруг пространства-времени, тогда как нити и есть пространство-время, а информация, которую они несут, определяет форму пространственно-временной ткани вокруг них.

Петли – это квантовые объекты, однако, они также определяют минимальную единицу площади и, во многом, таким же образом, как и обычная квантовая механика определяют минимальную энергию электрона в атоме водорода. Попытайтесь вставить дополнительные нити меньшей площади, и они просто отсоединятся от остальной сети и не смогут больше связаться ни с чем.

Они как бы выпадают из пространства-времени.

Петлевая квантовая гравитация
На видео показано, как пространство развивается в петлевой квантовой гравитации. Цвета граней тетраэдров указывают на масштаб области в данной точке в конкретный момент времени.

Минимальная площадь хороша тем, что петлевая квантовая гравитация не может сжать бесконечное количество кривых в бесконечно малую точку. Это означает, что она не может привести к тем особенностям, когда уравнения Эйнштейна рушатся: в момент Большого Взрыва или в центре черных дыр.

Воспользовавшись этим фактом, в 2006 году Аштекар и его коллеги представили серию моделей, в которых повернули время вспять и продемонстрировали то, что было до Большого взрыва. По мере приближения к фундаментальному пределу размера, продиктованному петлевой квантовой гравитацией, сила отталкивания раскрыла и зафиксировала сингулярность открытой, превратив ее в туннель к космосу, предшествующему нашему.

В этом году Родольфо Гамбини (Rodolfo Gambini) из Республиканского Университета Уругвая в Монтевидео и Хорхе Пуйин (Jorge Pullin) из Университета Луизианы в Батон-Руж представили аналогичные модели, но уже для черной дыры. Если двигаться глубоко в сердце черной дыры, то можно обнаружить не сингулярность, а тонкий пространственно-временной туннель, ведущий в другую часть космоса.

«Очень важно избавиться от проблемы сингулярности», — Абэй Аштекар (Abhay Ashtekar)физик, Университет штата Пенсильвания, Юниверсити-Парк, штат Пенсильвания

Петлевая квантовая гравитация не является полноценной теорией, так как она не содержит никаких других сил. Кроме того, физикам еще предстоит показать, как «получилось» обычное пространство-время из информационной сети. Но Даниэле Орити (Daniele Oriti), физик из Института гравитационной физики Макса Планка в Гольме, надеется найти вдохновение в работе ученых, представивших экзотические фазы материи, которая совершает переходы, описанные квантовой теорией поля. Орити и его коллеги ищут формулы для описания того, как Вселенная могла бы проходить аналогичные фазы от набора дискретных петель к плавному и непрерывному пространству-времени.

«Это только начало, мы как рыбы, которые плавают в воде и при этом стремятся ее понять», — Даниэле Орити (Daniele Oriti)физик, Институт гравитационной физики Макса Планка в Гольме

Причинный ряд

Разочарования заставили некоторых исследователей придерживаться минималистской программы, известной как теория причинного ряда. Основанная Рафаэлем Соркиным (Rafael Sorkin), теория постулирует, что строительные блоки пространства-времени – это простые математические точки, связанные либо с прошлым, либо с будущим.

Это «скелетное» представление причинности, которая утверждает, что более раннее событие может повлиять на более позднее, но не наоборот. В результате сеть как растущее дерево превращается в пространство-время.

«Пространство появляется из точки так же, как температура выходит из атома. Нет смысла говорить об одном атоме, значение заключено в их большом количестве», — Рафаэль Соркин (Rafael Sorkin)физик, Институт Теоретической Физики «Периметр» в Ватерлоо, Канада

В конце 1980-х Соркин использовал эту структуру, чтобы представить число точек, которое должна включать Вселенная, и пришел к выводу, что они должны быть причиной малой внутренней энергии, которая ускоряет расширение Вселенной. Несколько лет спустя открытие темной энергии подтвердило его догадку. «Люди часто думают, что квантовая гравитация не может сделать проверяемых предсказаний, но здесь именно тот случай», — говорит Джо Хенсон, исследователь квантовой гравитации из Имперского колледжа в Лондоне. » Если значение темной энергии было бы больше или его не было бы совсем, тогда теория причинного ряда была бы исключена».

Причинная динамическая триангуляция

Едва ли найдутся доказательства, однако теория причинного ряда предложила несколько других возможностей, которые можно было бы проверить. Некоторые физики обнаружили, что гораздо удобнее использовать компьютерное моделирование. Идея, появившаяся в начале 1990-х, состоит в аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства-времени, оказавшимися в бурлящем море квантовых флуктуаций, и наблюдении за тем, как эти кусочки спонтанно соединяются в более крупные структуры.

«Первые попытки аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства-времени были неудачными. Строительные блоки пространства-времени были простыми гиперпирамидами, четырехмерные прототипы трехмерных тетраэдров, а предполагаемое соединение позволило им свободно комбинироваться. В результате получилась серия странных «вселенных», в которых было слишком много измерений (или слишком мало), часть из них существовала сама по себе, а часть разрушалась. Это была попытка показать то, что нас окружает», — Рената Лолл (Renate Loll)физик, Университет Неймегена, Нидерланды

Причинная динамическая триангуляция
Причинная динамическая триангуляция использует только два аспекта: пространство и время. На видео показаны двумерные вселенные, порожденные частицей пространства, самоорганизованными в соответствии с квантовыми правилами. Каждый цвет представляет собой срез Вселенной в определенный момент времени после Большого взрыва, который изображен как крошечный черный шар.

Но, как утверждают Соркин, Лолл и ее коллеги, с добавлением причинности все изменилось.

«В конце концов, измерение времени не похоже на три измерения пространства. Мы не можем путешествовать назад и вперед во времени, поэтому визуализация была изменена с учетом причинности. Тогда мы обнаружили, что пространственно-временные кусочки начали собираться в четырехмерные вселенные со свойствами, подобными нашей», — Рената Лолл (Renate Loll)физик, Университет Неймегена, Нидерланды

Интересно, что моделирование также намекает на то, что вскоре после Большого взрыва Вселенная прошла через младенческую фазу только с двумя измерениями: одно пространственное и одно временное. Это заключение было сделано независимо от попыток получить уравнения квантовой гравитации, и даже независимо от тех, кто полагает, что появление темной энергии является признаком того, что в нашей Вселенной появляется четвертое пространственное измерение.

Голография

Между тем, Ван Раамсдонк предложил совсем другое представление о появлении пространства-времени, основанное на голографическом принципе. Голограммоподобный принцип того, что у черных дыр вся энтропия находится на поверхности, был впервые представлен Хуаном Малдасеной (Juan Maldacena), приверженцем теории струн из Института Передовых Исследований в Принстоне. Он опубликовал свою модель голографической Вселенной в 1998 году. В этой модели трехмерный «интерьер» Вселенной включал в себя струны и черные дыры, управляемые исключительно силой тяжести, в то время как ее двумерная граница имела элементарные частицы и поля, подчинявшиеся обычным квантовым законам, а не гравитации.

Гипотетические жители трехмерного пространства никогда бы не увидели эту границу, потому что она была бы бесконечно далеко.

Но это никак не влияет на математику: все, что происходит в трехмерной Вселенной может быть одинаково хорошо описано уравнениями в случае двумерной границы, и наоборот. В 2010 году Ван Раамсдонк объяснил запутывание квантовых частиц на границе. Это означает, что данные, полученные в одной части, неизбежно скажутся на другой. Он обнаружил, что если каждая частица запутывается между двух отдельных областей границы, она неуклонно движется к нулю, поэтому квантовая связь между ними исчезает, трехмерное пространство начинает постепенно делиться (как клетка) до тех пор, пока не порвется последняя связь.

Таким образом, трехмерное пространство делится снова и снова, в то время как двумерная граница остается «на связи». Ван Раамсдонк заключил, что трехмерная вселенная идет бок о бок с квантовой запутанностью на границе. Это означает, что, в некотором смысле, квантовая запутанность и пространство-время — это одно и то же.

Или, как выразился Малдасена: «Это говорит о том, что квант – явление фундаментальное, а пространство-время зависит от него».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *