Как построить точку в трехмерной системе
Прямоугольная система координат на плоскости и в пространстве
При введении системы координат на плоскости или в трехмерном пространстве появляется уникальная возможность описания геометрических фигур и их свойств при помощи уравнений и неравенств. Это имеет иное название – методы алгебры.
Данная статья поможет разобраться с заданием прямоугольной декартовой системой координат и с определением координат точек. Более наглядное и подробное изображение имеется на графических иллюстрациях.
Прямоугольная декартова система координат на плоскости
Изображение прямоугольной системы координат на плоскости.
Оси абсцисс и ординат имеют одинаковую единицу изменения и масштаб, что показано в виде штрихе в начале координатных осей. Стандартное направление О х слева направо, а O y – снизу вверх. Иногда используется альтернативный поворот под необходимым углом.
Прямоугольная система координат получила название декартовой в честь ее первооткрывателя Рене Декарта. Часто можно встретить название как прямоугольная декартовая система координат.
Прямоугольная система координат в трехмерном пространстве
По направлению координатных осей делят на правую и левую прямоугольные системы координат трехмерного пространства.
Аналогично образуется левая система координат. Обе системы совместить невозможно, так как соответствующие оси не совпадут.
Координаты точки в декартовой системе координат на плоскости
Имеющееся число x M называют координатой точки М на заданной координатной прямой.
Координаты точки в прямоугольной системе координат в трехмерном пространстве
Трехмерные Координаты
В предыдущих главах были рассмотрены приемы построения чертежей в плоскости XY. Положение любой точки в этой системе координат характеризуются двумя значениями – абсциссой и ординатой. Для выполнения построений в трехмерном пространстве к этим координатам добавляется третья величина, определяющая объем того или иного изделия. Речь идет о координате Z, придающей плоским объектам объем. Умение правильно задавать координаты трехмерных объектов способствует корректному моделированию пространственных деталей. Для этих целей AutoCAD располагает тремя типами систем отсчета: трехмерные декартовые, цилиндрические и сферические координаты.
ДЕКАРТОВЫЕ КООРДИНАТЫ
Для обозначения положения точки в трехмерном пространстве при помощи декартовых координат необходимо к значениям ее координат на плоскости XY добавить третье значение – координату Z. Так, например, на рис. 10.4 изображена точка, у которой координаты в плоскости XY равны 13.19, а по оси Z – 11 единиц.
При вводе координат в этой системе в первую очередь задается координата X, затем через запятую Y и только потом Z. Например: 13,19,11. Если числовое значение координаты дробное, то разделять целую и дробную части необходимо точкой. Кроме того, пробелы между числами и запятыми не допускаются.
Попробуем построить параллелепипед из линий, с размерами 13,19,11, используя трехмерную систему координат. Для этого выберем Отрезок в главном меню. Для установки начальной точки параллелепипеда в координатах (0,0,0), воспользуемся динамическим вводом. После выбора Отрезка введем 0,0 Enter. Вместо «,» в динамическом вводе можно использовать клавишу TAB. В AutoCAD используются абсолютные и относительные координаты. В случае абсолютных координат, отсчет осуществляется от начала координат, а отсчет относительных координат осуществляется от последней поставленной точки и обозначается знаком @, абсолютных – знаком # перед вводом координат. Попробуем начертить параллелепипед, используя ввод координат.
У нас получился незаконченный параллелепипед, для завершения построения можно вручную дочертить 3 недостающие линии.
Пример ввода абсолютных координат для построения параллелепипеда.
Пример ввода относительных координат для построения параллелепипеда.
После добавления недостающих линий и размеров. Как видим, получилось так, как и требовалось.
Примечание. Если при вводе координат в трехмерном пространстве пропущено значение Z, AutoCAD автоматически присвоит ему значение по умолчанию, записанное в системной переменной ELEVATION и называемое возвышением.
При создании трехмерных объектов используются понятия возвышения (уровня плоскости XY) и высоты. Возвышение определяется Z-координатой плоскости XY, на которой объект построен. Понятно, что если возвышение равно нулю (значение по умолчанию), то уровень объекта (его плоскость) совпадает с плоскостью XY. При положительном возвышении объект находится выше плоскости XY, а при отрицательном – ниже. Что касается высоты трехмерных объектов, то она определяет расстояние, на которое объект смещен относительно возвышения.
Обычно к редактированию параметров возвышения и высоты прибегают в случае, когда необходимо построить несколько точек, у которых координата Z имеет одно и то же значение. Упрощение построений вызвано тем, что при этом достаточно будет вводить для каждой такой точки только два значения, определяющих ее положение в плоскости XY.
Как уже было отмечено, текущее значение возвышения хранится под именем системной переменной ELEVATION, а высоты – переменной THICKNEES. Для того чтобы изменить значение обоих параметров, присваиваемое вновь созданным объектам, нужно выполнить команду Elev и ответить на следующие вопросы:
Specify new default elevation :
Specify new default thickness :
Также следует отметить, что значение высоты объекта можно менять из палитры Свойства (Properties).
ЦИЛИНДРИЧЕСКИЕ КООРДИНАТЫ
Положение точки в цилиндрических координатах также определяется тремя величинами, однако одно из них – угловое.
Как известно, круговой цилиндр образуется путем вращения образующей 2-3 (рис. 10.5а) по окружности, описывая угол 360°. Именно этот принцип положен в концепцию цилиндрических координат. Определяя положение точки, необходимо задать вначале радиус цилиндра (0-1), затем угол вращения образующей (1-2) и, наконец, высоту цилиндра (2-3). Так, например, точка, изображенная на рис. 10.36, была построена относительно текущей ПСК после ввода в командную строку 23 СФЕРИЧЕСКИЕ КООРДИНАТЫ
Положение точки в сферических координатах определяется также тремя величинами, из которых одно линейное, а два остальных – угловые.
Как известно, сферическая поверхность представляет собой геометрическое место точек пространства, равноудаленных от одной точки – центра шара. Поэтому, чтобы определить положение точки, расположенной на поверхности сферы (рис. 10.7а), достаточно указать радиус окружности, вращением которой образуется шар (0-1), затем угол, образованный вращением окружности вокруг оси Z (1-2), и наконец, угол, образованный вращением окружности относительно оси X (2—3). Так, например, точка, изображенная на рис. 10.76, была построена относительно текущей ПСК после ввода в командную строку 25 ФИЛЬТРЫ ТОЧЕК
Координатные фильтры точек – это еще один способ ввода координат в трехмерном пространстве, отличительной чертой которого является зависимость от координат ранее введенных объектов. Другими словами, чтобы назначить координаты этим способом, нужно привязаться к узлам уже существующих объектов для автоматического извлечения из них заказанной вами координаты.
Примечание. Задание координат в трехмерном пространстве способом фильтрации точек может быть эффективно только при использовании режимов объектной привязки.