Как посчитать угол по тангенсу

Математика для блондинок

Страницы

вторник, 9 октября 2012 г.

Как найти угол по тангенсу

В комментариях к тригонометрической таблице меня спросили, как перевести в градусы tg@= 4,99237? В общем виде вопрос заключается в том, как найти угол по тангенсу? Для решения этой задачи мы будем использовать калькулятор. Поскольку математики никогда не ставили перед собой задачи навести порядок в математике, то углы и сегодня измеряются в самых разных единицах измерения. Наиболее популярны среди математиков градусная и радианная меры углов. Мы тоже найдем решение как в градусах, так и в радианах. Благо, на калькуляторе они есть.

Как включить калькулятор? Читайте в конце этой страницы.

Сначала мы найдем угол по тангенсу в градусах. Для этого в правом верхнем углу калькулятора нужно установить специальный пыптик в положение Deg 360, что соответствует градусам. Дальше кнопочками вводим число 4,99237. Вот что у нас должно получиться.

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

После этого нужно нажать кнопочку арктангенс. Именно эта математическая ерунда превращает значение тангенса в угол. На калькуляторе эта хитрая обратная тригонометрическая функция (как её величают математики) замаскирована под кнопочку tan в степени минус 1, то есть тангенс в минус первой степени. После нажатия этой кнопочки восторженный калькулятор на все лады расхваливает нашу мудрость и всеми возможными способами сообщает нам, что мы таки ковырнули арктангенс, а не что нибудь другое. Об этом свидетельствует название функции atan (4.99237) в окошке калькулятора. Для особо одаренных здесь же буковками написано Arc tangent. Правда, особо одаренным нужно ещё знать английский язык, для того, чтобы понять всю глубину восторга калькулятора.

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Для полного счастья, можно пролить бальзам на душу математиков, разложив эту десятичную форму записи градусов на градусы, минуты и секунды. Для этого дробную часть числа умножаем на 60 и получаем количество минут в дробном хвосте градусов.

Подобную процедуру повторяем с минутами. Дробную часть минут умножаем на 60 и получаем секунды.

Процедуру можно повторять и дальше до бесконечности, но, к счастью, математики до этого ещё не додумались. По этому на секундах мы и остановимся. Ничего, что секунды у нас получились с дробным хвостиком. Математики к таким хвостам относятся терпимо. В итоге, полнометражная версия полученного нами угла в градусной мере углов выглядит следующим образом:

78 градусов 40′ 23,52″

В слух эта магическая надпись произносится так: «78 градусов, 40 минут, 23 целых и 52 сотых секунды». Аминь!

Нет, ещё не «Аминь!». Теперь нужно выковырять из калькулятора этот же угол, только в радианах. Процедура добывания угла точно такая же, как и для градусов, с той только разницей, что в самом начале мы на калькуляторе нажимаем соседний пыптик Rad 2п. Повинуясь нашей воле, калькулятор добросовестно выдаст нам результат в радианах. Вот как это будет выглядеть.

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Как видите, в радианах мы получили всего-навсего 1,3731 радиан. И за что математики так любят радианы? Ведь, плюнуть не на что. Ну, да Бог с ними, с этими математиками.

Тетерь самый интересный вопрос из комментариев: «А как включить-то калькулятор. «

Теритически, на всех компьютерах и смартфонах калькулятор устанавливается по умолчанию. Просто его нужно найти.

Компьютер. Нажимаем кнопку «Пуск», затем нажимаем «Все программы». Ищем среди программ «Стандартные» и открываем эту папку. У меня именно в ней спрятана программа «Калькулятор». Открываем эту программу нажатием левой кнопки мыши, появляется калькулятор. Если вы не видите на калькуляторе тангансов, котангенсов и прочей математической ерунды, тогда в верхнем меню нажмите на слово «Вид» и включите пиптик «Инженерный». Ваш калькулятор готов к великим математическим свершениям. Кстати, по логике разработчиков калькуляторов, вся эта математическая ерунда типа тангенсы-котангенсы обычным людям и даром не нужна, о чем всидетельствует «Обычный» вид калькулятора.

Смартфон. У меня калькулятор расположен прямо на главном экране. Нажимай и пользуйся. Вот только вылезает калькулятор в обычном виде. Где найти математику? Никогда не задавался таким вопросом. Методом научного тыка выяснил, что в левом нижнем углу экрана есть красненький значек, изображающий два какдратика по диагонали и две стрелочки. После нажатия на этот символ появляются все математические фишки, заложенные разработкичами. Теперь вы становитесь повелителем тангенсов-котангенсов и прочих математических чудес.

Источник

Калькулятор тангенса

Тангенс — тригонометрическая функция, численно равная соотношению длин противолежащего и прилежащего катета. Тангенс широко используется во многих современных приложениях.

История вопроса

Тригонометрия берет свое начало в Древнем Вавилоне, когда ученые изучали свойства сторон прямоугольного треугольника. Именно тогда была сформулирована теорема, постулирующая соотношение катетов и гипотенузы, доказанная только через полторы тысячи лет самосским математиком Пифагором. Изначально использовался только синус, который рассчитывался как половина хорды окружности, описанной вокруг прямоугольного треугольника.

Тангенс появился гораздо позднее, когда перед учеными возникла задача определения длины тени, отбрасываемой объектами, стоящими перпендикулярно к поверхности земли. Тангенс был введен арабским математиком Абу-ль-Вафой в десятом веке. Восточный ученый составил специальные таблицы для определения тангенсов и котангенсов, однако это открытие так и не попало на европейский континент.

В Европе тангенсы были вновь открыты только в XIV веке: немецкий математик Иоганн Мюллер Региомонтан использовал функцию в астрономических расчетах. Термин «тангенс» произошел от латинского слова tanger, что означает «касание» и был введен в обиход в конце XVI века. Данный термин использовался для описания линии тангенсов, то есть касательной к единичной окружности. Региомонтан доказал теорему тангенсов, а также составил специальные таблицы значений функции, которые подошли как для плоской, так и для сферической геометрии.

Определение тангенса

Геометрически тангенс определяется как соотношение противолежавшего катета к прилежащему. Функция всегда рассчитывается для угла и не зависит от длин сторон. Пусть у нас есть треугольник со сторонами A, B и C, где C — гипотенуза. Тангенс угла AC будет рассчитываться как соотношение противолежащего катета B к прилежащему A или tgAC = B/A. Для угла BC тангенс рассчитывается как дробь, в числителе которой длина противолежащего углу катета A к прилежащему B, что математически записывается как tgBC = A/B. Угол AB образуется при двумя катетами, поэтому его невозможно посчитать. Катеты — стороны, образующие прямой угол, поэтому для угла в 90 градусов тангенс не существует.

Помимо геометрического определения, тангенс легко выразить через другие тригонометрические функции. Так, для угла A тангенс можно выразить при помощи отношения синуса и косинуса:

Наша программа позволяет определить численное значение тангенса для любого значения угла. Для этого достаточно выбрать в меню соответствующую функцию и ввести в ячейку «Угол» величину угла в градусах или радианах. Если необходимо найти угол по известному значению тригонометрической функции, используйте функцию арктангенса. Для этого введите значение тангенса в соответствующую ячейку, после чего калькулятор вернет вам величину угла.

Рассмотрим пару примеров

Вычисление угла

Пусть в школьной задаче задан прямоугольный треугольник со сторонами A = 5 см, B = 12 см, C = 13 см. Требуется найти величины всех углов. Итак, очевидно, что угол AB, то есть угол, образуемый двумя катетами — прямой. Это известно из самого определения катетов. Теперь мы можем найти тангенс угла BC, который численно будет равен дроби, в числителе которой противолежащий катет A, а в знаменателе — прилежащий B. Следовательно, tgBC = A/B = 5/12 = 0,416. Зная тангенс, мы легко можем вычислить соответствующий угол при помощи онлайн-калькулятора. Для это выберем в меню функцию тангенса и введем значение 0,416 в ячейку tgα. Программа мгновенно отобразит величину угла, равную 22,58 градуса. Вычислить последний угол не составит труда, так согласно постулату о сумме углов треугольника, угол AC = 180 − 90 − 22,58 = 67,42 градуса.

Вычисление тангенса

В школьных задачах чаще всего используются стандартные углы, поэтому школьникам важно знать значения основных тригонометрических функций для этих углов буквально наизусть. Давайте при помощи калькулятора определим значения тангенсов для наиболее распространенных в задачах углов:

Выше мы выяснили, почему тангенс не рассчитывается для значений 90 градусов. Еще одно интересное значение — угол в 45 градусов. Почему тангенс равен 1? Ответ очевиден, ведь если в прямоугольном треугольнике один угол равен 45 градусам, то и второй имеет такую же величину. Следовательно, треугольник равнобедренный, его катеты имеют одинаковую длину, а их соотношение в любом случае будет равно 1.

Заключение

Тригонометрия — сложная наука, которая не находит практически никакого применения в повседневной жизни. Однако без тригонометрии не было бы современных технологий, поэтому специалистам прикладных наук без нее никуда. Используйте наши онлайн-калькуляторы для расчета значений тригонометрических функций.

Источник

Что такое тангенс угла и как его найти

Живущим людям на Земле
всегда хотелось знать,
как путь найти в пустыне, море,
и можно к звёздам ли попасть.

Хотелось труд свой облегчить,
создать машины, чтоб летать.
И чтоб вопросы разрешить,
пришлось про тангенс всем узнать.

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.

Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.

Тангенс угла

Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.

В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.

Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.

Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.

Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.

Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.

Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).

Тангенс — это отношение.

Итак, есть два определения:

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.

Тангенс – это отношение синуса к косинусу.

Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.

» alt=»»>

Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan⁡(α).

Как найти тангенс угла (формулы)

Первое свойство тангенса вытекает из его определения как отношения катетов.

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Так как тангенс – это отношение катетов, то

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.

Как найти тангенс по клеточкам

Учитывая первое определение, можно определить, как найти тангенс угла по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.

Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Из формулы тангенсов, записывающей кратко второе определение

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.

Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится зависимость тангенса и косинуса:

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:

Как посчитать угол по тангенсу. Смотреть фото Как посчитать угол по тангенсу. Смотреть картинку Как посчитать угол по тангенсу. Картинка про Как посчитать угол по тангенсу. Фото Как посчитать угол по тангенсу

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (5)

Я Очень Люблю Правила, Теоремы, Формулы по Предмету «Математика», «Алгебра».

Прочитал статью и остался один главный вопрос, а собственно без вспомогательных таблиц найти угол В ГРАДУСАХ вообще возможно и есть ли у вас статья, где рассказыввается как это сделать? Спасибо.

Я ни разу не математик, но почему у вас сумма углов прямоугольного треугольника равна 90 градусов. А так все хорошо начиналось. Объясняете хорошо, но после таких ошибок у меня сомнения что информация верная.

Спасибо. Уточнил в тексте, что это сумма двух непрямых углов прямоугольного треугольника.

Пишу стихи. Востребован тангенс для решения жизненных ситуаций поскольку состоит из тех же функций,как-то, касающийся,прилежащий, трогающий. Куда без них денешься.

Источник

Таблица ТАНГЕНСОВ для углов от 0° до 360° градусов

ТАНГЕНС (Tg α) острого угла в прямоугольном треугольнике равняется отношение противолежащего катета к прилежащему катету.

Малая таблица значений тригонометрических функций (в радианах и градусах)

α (радианы)0π/6π/4π/3π/2π3π/2
α (градусы)30°45°60°90°180°270°360°
tg α (Тангенс)01/31300

Полная таблица тангенсов для углов от 0° до 360°

Угол в градусахtg (Тангенс)
0
0.0175
0.0349
0.0524
0.0699
0.0875
0.1051
0.1228
0.1405
0.1584
10°0.1763
11°0.1944
12°0.2126
13°0.2309
14°0.2493
15°0.2679
16°0.2867
17°0.3057
18°0.3249
19°0.3443
20°0.364
21°0.3839
22°0.404
23°0.4245
24°0.4452
25°0.4663
26°0.4877
27°0.5095
28°0.5317
29°0.5543
30°0.5774
31°0.6009
32°0.6249
33°0.6494
34°0.6745
35°0.7002
36°0.7265
37°0.7536
38°0.7813
39°0.8098
40°0.8391
41°0.8693
42°0.9004
43°0.9325
44°0.9657
45°1
46°1.0355
47°1.0724
48°1.1106
49°1.1504
50°1.1918
51°1.2349
52°1.2799
53°1.327
54°1.3764
55°1.4281
56°1.4826
57°1.5399
58°1.6003
59°1.6643
60°1.7321
61°1.804
62°1.8807
63°1.9626
64°2.0503
65°2.1445
66°2.246
67°2.3559
68°2.4751
69°2.6051
70°2.7475
71°2.9042
72°3.0777
73°3.2709
74°3.4874
75°3.7321
76°4.0108
77°4.3315
78°4.7046
79°5.1446
80°5.6713
81°6.3138
82°7.1154
83°8.1443
84°9.5144
85°11.4301
86°14.3007
87°19.0811
88°28.6363
89°57.29
90°

Таблица тангенсов для углов от 91° до 180°

Уголtg (Тангенс)
91°-57.29
92°-28.6363
93°-19.0811
94°-14.3007
95°-11.4301
96°-9.5144
97°-8.1443
98°-7.1154
99°-6.3138
100°-5.6713
101°-5.1446
102°-4.7046
103°-4.3315
104°-4.0108
105°-3.7321
106°-3.4874
107°-3.2709
108°-3.0777
109°-2.9042
110°-2.7475
111°-2.6051
112°-2.4751
113°-2.3559
114°-2.246
115°-2.1445
116°-2.0503
117°-1.9626
118°-1.8807
119°-1.804
120°-1.7321
121°-1.6643
122°-1.6003
123°-1.5399
124°-1.4826
125°-1.4281
126°-1.3764
127°-1.327
128°-1.2799
129°-1.2349
130°-1.1918
131°-1.1504
132°-1.1106
133°-1.0724
134°-1.0355
135°-1
136°-0.9657
137°-0.9325
138°-0.9004
139°-0.8693
140°-0.8391
141°-0.8098
142°-0.7813
143°-0.7536
144°-0.7265
145°-0.7002
146°-0.6745
147°-0.6494
148°-0.6249
149°-0.6009
150°-0.5774
151°-0.5543
152°-0.5317
153°-0.5095
154°-0.4877
155°-0.4663
156°-0.4452
157°-0.4245
158°-0.404
159°-0.3839
160°-0.364
161°-0.3443
162°-0.3249
163°-0.3057
164°-0.2867
165°-0.2679
166°-0.2493
167°-0.2309
168°-0.2126
169°-0.1944
170°-0.1763
171°-0.1584
172°-0.1405
173°-0.1228
174°-0.1051
175°-0.0875
176°-0.0699
177°-0.0524
178°-0.0349
179°-0.0175
180°0

Таблица тангенсов для углов от 181° до 270°

Уголtg (Тангенс)
181°0.0175
182°0.0349
183°0.0524
184°0.0699
185°0.0875
186°0.1051
187°0.1228
188°0.1405
189°0.1584
190°0.1763
191°0.1944
192°0.2126
193°0.2309
194°0.2493
195°0.2679
196°0.2867
197°0.3057
198°0.3249
199°0.3443
200°0.364
201°0.3839
202°0.404
203°0.4245
204°0.4452
205°0.4663
206°0.4877
207°0.5095
208°0.5317
209°0.5543
210°0.5774
211°0.6009
212°0.6249
213°0.6494
214°0.6745
215°0.7002
216°0.7265
217°0.7536
218°0.7813
219°0.8098
220°0.8391
221°0.8693
222°0.9004
223°0.9325
224°0.9657
225°1
226°1.0355
227°1.0724
228°1.1106
229°1.1504
230°1.1918
231°1.2349
232°1.2799
233°1.327
234°1.3764
235°1.4281
236°1.4826
237°1.5399
238°1.6003
239°1.6643
240°1.7321
241°1.804
242°1.8807
243°1.9626
244°2.0503
245°2.1445
246°2.246
247°2.3559
248°2.4751
249°2.6051
250°2.7475
251°2.9042
252°3.0777
253°3.2709
254°3.4874
255°3.7321
256°4.0108
257°4.3315
258°4.7046
259°5.1446
260°5.6713
261°6.3138
262°7.1154
263°8.1443
264°9.5144
265°11.4301
266°14.3007
267°19.0811
268°28.6363
269°57.29
270°

Таблица тангенсов для углов от 271° до 360°

Уголtg (Тангенс)
271°-57.29
272°-28.6363
273°-19.0811
274°-14.3007
275°-11.4301
276°-9.5144
277°-8.1443
278°-7.1154
279°-6.3138
280°-5.6713
281°-5.1446
282°-4.7046
283°-4.3315
284°-4.0108
285°-3.7321
286°-3.4874
287°-3.2709
288°-3.0777
289°-2.9042
290°-2.7475
291°-2.6051
292°-2.4751
293°-2.3559
294°-2.246
295°-2.1445
296°-2.0503
297°-1.9626
298°-1.8807
299°-1.804
300°-1.7321
301°-1.6643
302°-1.6003
303°-1.5399
304°-1.4826
305°-1.4281
306°-1.3764
307°-1.327
308°-1.2799
309°-1.2349
310°-1.1918
311°-1.1504
312°-1.1106
313°-1.0724
314°-1.0355
315°-1
316°-0.9657
317°-0.9325
318°-0.9004
319°-0.8693
320°-0.8391
321°-0.8098
322°-0.7813
323°-0.7536
324°-0.7265
325°-0.7002
326°-0.6745
327°-0.6494
328°-0.6249
329°-0.6009
330°-0.5774
331°-0.5543
332°-0.5317
333°-0.5095
334°-0.4877
335°-0.4663
336°-0.4452
337°-0.4245
338°-0.404
339°-0.3839
340°-0.364
341°-0.3443
342°-0.3249
343°-0.3057
344°-0.2867
345°-0.2679
346°-0.2493
347°-0.2309
348°-0.2126
349°-0.1944
350°-0.1763
351°-0.1584
352°-0.1405
353°-0.1228
354°-0.1051
355°-0.0875
356°-0.0699
357°-0.0524
358°-0.0349
359°-0.0175
360°0

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите нужную часть таблицы, на выделенном фоне нажмите правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Чему равен тангенс 30? …

— Ищем в таблице соответствующее значение. Правильный ответ: 0.5774

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *