Как посчитать шаг зуба шестерни
Как посчитать шаг зуба шестерни
Классификация передач. По форме различают цилиндрические, конические, реечные, эллиптические, фигурные зубчатые колеса и с неполным числом зубьев. В зависимости от взаимного расположения; зубчатых колес различают зубчатые передачи с внешним и внутренним зацеплением, а также разделяются на открытые и закрытые (рис. 81).
Преимущества. Важнейшие: компактность, высокий КПД, постоянство передаточного числа, большая долговечность и надежность в работе, возможность осуществления передачи практически любых мощностей при практически любых скоростях и передаточных отношениях, простота обслуживания. Высокая технологичность, которая обусловлена высокопроизводительным специальным оборудованием и технологиями.
Недостатки. Высокие требования к качеству изготовления и монтажа. Шум при больших скоростях. Концентрация напряжений в эвольвентных передачах при точечном контакте и чувствительность к ошибкам монтажа в передачах с линейным контактом. Поэтому для реализации преимуществ при изготовлении деталей необходимо применять высококачественные материалы и технологии изготовления.
Сферы применения. 3убчатые передачи нашли самое широкое распространение среди механических передач в машинах различных отраслей. Назначение и конструкции зубчатых передач разнообразны. Их применяют во многих приборах и почти во всех машинах, в том числе и самых тяжелых и мощных для передачи мощностей до 65 тыс.кВТ (65МВт), с диаметром колес от долей миллиметра до 6м и более. Окружная скорость зубьев может достигать 270м/с. Передаточные отношения для открытой передачи принимают 10, а для закрытой
25. КПД одной ступени зубчатой передачи при высоком качестве изготовления и монтажа может достигать
0,99.
Геометрический расчет. Передаточное отношение передачи
, (14.1)
где — число зубьев шестерни и колеса соответственно.
Номинальные значения передаточных чисел и зубчатых редукторов общего назначения, выполненных в виде самостоятельных агрегатов стандартизированы:
1-й ряд 1,00; 1,25; 1,60; 2,00; 2,50; 3,15; 4,0; 5,0; 6,3; 8,0; 10,0;12,5.
2-й рад 1,12; 1,40; 1,80; 2,24; 2,80; 3,55; 4,5; 5,6; 7,1; 9,0; 11,2.
При выборе стандартных параметров первый ряд предпочтительнее второго, а принятые значения передаточных чисел не должны отличаться от расчетных не более чем на 3%.
Расстояние между осями зубчатых колес цилиндрической передачи по межосевой линии называется межосевым расстоянием:
, (14.2)
Стандартизированы номинальные значения межосевых расстояний aw, мм:
1-й ряд 40; 50; 63; 80100; 125; 160; 200; 250; 315; 400; 500; 630; 800
Межосевое расстояние цилиндрической зубчатой передачи, равное полусумме делительных диаметров колеса d2 и шестерни при внешнем зацеплении или полуразности при внутреннем зацеплении, называется делительным межосевым расстоянием:
. (14.3)
Делительные диаметры для зубчатых колес прямозубой передачи
для косозубой и шевронной
. (14.5)
1-й ряд 1,0; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25;
2-й ряд 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14; 18; 22; 28.
Ширина венца цилиндрического зубчатого колеса определяется по одной из формул
, (14.6)
, (14.7)
где — коэффициент ширины зубчатого венца по межосевому расстоянию, а
— коэффициент ширины зубчатого венца по диаметру шестерни.
Коэффициенты и
связаны зависимостью:
. (14.8)
Значения коэффициентов ширины венца зубчатых колес по межосевому расстоянию выбираются из стандартного ряда: 0,1; 0,125; 0,16; 0,2; 0,250; 0,315; 0,400; 0,500; 0,630; 0,800; 1,000; 1,25 и т. д.
Рис. 82. Обозначения элементов зубчатого зацепления.
Для заданного числа зубьев и
, коэффициентов смещения исходного контура
и
, угла наклона зубьев
основные параметры эвольвентных цилиндрических колес внешнего зацепления, показанные на рис 82 в соответствии с ГОСТ 13755-81 определяются по расчетным формулам:
Параметр
Шестерня
Колесо
Диаметр вершин зубьев
Диаметр впадин зубьев
Делительный угол профиля в торцевом сечении
Коэффициент торцевого перекрытия
Рабочая ширина зубчатого венца
Коэффициент осевого перекрытия (при ширине венца )
Основной угол наклона
Кинематический и силовой расчет. Расчетная окружная скорость v цилиндрической передачи:
— шестерни ; (14.9)
— колеса ,
Окружная сила цилиндрической зубчатой передачи Ft
, (14.10)
где — крутящий момент на шестерне.
Сила давления между зубьями в цилиндрической прямозубой передаче
. (14.11)
Радиальная сила в цилиндрической передаче
, (14.12)
Осевая сила, действующая на колесо косозубой цилиндрической передачи
, (14.13)
Критерии работоспособности зубчатых передач. Учитывая виды повреждений критериями работоспособности зубчатых передач являются контактная и изгибная прочность зубьев. Проектный расчет закрытых передач малой и средней твердости выполняется на контактную выносливость. Расчет на изгибную прочность зубьев в этом случае выполняется как проверочный. Для зубчатых колес высокой прочности () размеры передачи определяются из расчета зубьев на изгиб, а проверочный расчет выполняется по контактным напряжениям. Для открытой передачи проектный расчет выполняется из условия предупреждения поломки зуба с учетом износа зубьев, проверочный расчет выполняется из условия обеспечения контактной прочности.
Проектные расчеты зубчатых передач.
Расчет зубьев на контактную прочность выполняют для зацепления в полюсе, так как выкрашивание зубьев начинается у полюсной линии. По зависимости для проектного расчета на контактную прочность зубьев определяется межосевое расстояние
, (14.14)
где — коэффициент для прямозубых передач Ка = 495, а для косозубых Ка= 430,
— момент на зубчатом колесе передачи в
,
— коэффициент неравномерности распределения нагрузки по длине контактных линий в результате погрешностей в зацеплении и деформации зубьев, который определяется по рис. 84;
— допускаемое контактное напряжение в МПа.
Рис.84. Коэффициенты неравномерности распределения нагрузки по длине контактных линий для расчета на контактную прочность.
Коэффициент ширины венца по межосевому расстоянию для редукторов принимают равным: для зубчатых колес из улучшенных сталей при несимметричном расположении
= 0,315. 0,4; для зубчатых колес из закаленных сталей
= 0,25. 0,315; при симметричном расположении зубчатых колес относительно опор
= 0,4. 0,5; для передвижных зубчатых колес коробок скоростей
= 0,1. 0,2. Принимаются стандартные значения
.
Допускаемое контактное напряжение
, (14.15)
При известном межосевом расстоянии ориентировочное значение модуля передачи определяется по зависимости
, (14.27)
где — коэффициент для прямозубой передачи
=1400, для косозубой и шевронной
=850.
Значение модуля зацепления полученное по формуле (14.27) округляется до ближайшего стандартного значения. После определения значений межосевого расстояния и модуля
определяются число зубьев и все геометрические параметры передачи по которым выполняется проверочные расчеты.
Проверочные расчеты зубчатых передач.
Расчет зубьев на контактную прочность выполняется по известным геометрическим параметрам передачи при выбранной степени точности изготовления зубьев колес по зависимости
— для прямозубых передач
; (14.28)
— для косозубых передач
, (14.29)
где ,
— коэффициент неравномерности распределения нагрузки между зубьями в зависимости от скорости и точности изготовления;
— коэффициент динамической нагрузки, возникающей в зацеплении.
Таблица 14.3 Значения коэффициента динамических нагрузок
Степень точности
Твердость поверхностей зубьев
υ, м/с
Коэффициент неравномерности распределения нагрузки для прямозубых передач принят КНа = 1, а для косозубых коэффициент определяются по графикам на рис.87. Коэффициент динамической нагрузки
определяют по таблице 14.3.
При действии на зубья кратковременных перегрузок выполняется проверка рабочих поверхностей зубьев на контактную прочность по максимальному контактному напряжению:
, (14.30)
Расчет зубьев на изгибную прочность выполняется по известным геометрическим параметрам передачи при выбранной степени точности изготовления зубьев колес по зависимости
, (14.31)
где — коэффициент учитывающий перекрытие зубьев;
— коэффициент наклона зубьев;
— коэффициент распределения нагрузки между зубьями;
— коэффициент динамической нагрузки, возникающей в зацеплении при работе передачи,
— коэффициент ширины венца зубчатого колеса по начальному диаметру шестерни.
При подстановке окружной силы по зависимости (14.10) формула (14.31) преобразуется к виду
.
Коэффициент, учитывающий перекрытие зубьев
.
При приближенных расчетах для для косозубых передач и прямозубых передач принимают .
Коэффициент наклона зубьев для прямозубых передач , для косозубых определяется по зависимости
, (14.32)
при .
Коэффициент неравномерности распределения нагрузки для прямозубых передач принят , а для косозубых коэффициент
определяются по графикам на рис.87. Коэффициент динамической нагрузки
определяют по таблице 14.4
Таблица 14.4 Значения коэффициента динамических нагрузок
Степень точности
Твердость поверхностей зубьев