Как посчитать момент сопротивления сечения
Момент инерции и момент сопротивления
При определении сечения строительных конструкций очень часто необходимо знать момент инерции и момент сопротивления для рассматриваемого поперечного сечения конструкции. Что такое момент сопротивления и как он связан с моментом инерции изложено отдельно. Кроме того, для сжимаемых конструкций также нужно знать значение радиуса инерции. Определить момент сопротивления и момент инерции, а иногда и радиус инерции для большинства поперечных сечений простой геометрической формы можно по давно известным формулам:
Таблица 1. Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций достаточно простых геометрических форм.
Обычно, этих формул достаточно для большинства расчетов, но случаи бывают всякие и сечение конструкции может быть не такой простой геометрической формы или положение осей, относительно которых нужно определить момент инерции или момент сопротивления, может быть не таким, тогда можно воспользоваться следующими формулами:
Таблица 2. Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций более сложных геометрических форм
Как видно из таблицы 2, высчитывать момент инерции и момент сопротивления для неравнополочных уголков достаточно сложно, да нет в этом необходимости. Для неравнополочных и равнополочных прокатных уголков, а также для швеллеров, двутавров и профильных труб есть сортаменты. В сортаментах значения момента инерции и момента сопротивления приводятся для каждого профиля.
Таблица 3. Изменения моментов инерции и моментов сопротивления в зависимости от положения осей.
Формулы из таблицы 3 могут понадобиться для расчета наклонных элементов кровли.
Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»
Для терминалов номер Яндекс Кошелька 410012390761783
Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV
Было бы неплохо объяснить на наглядном примере для особо одаренных, типа меня, что такое момент инерции и с чем его едят. На специализированных сайтах как-то всё очень запутанно, а у Дока есть явный талант довести информацию, быть может не самую сложную, но очень грамотно и понятно
В принципе все предельно ясно, но здесь проще www.kataltim.ru
требуется определить момент инерции для сложного нестандартного сечения. сечение: прямоугольник с двумя пазами. внешне похоже на букву «Ш». не получается найти какую либо информацию. буду признателен за какую нибудь информацию
Посмотрите статью «Расчет прочности потолочного профиля для гипсокартона» (http://doctorlom.com/item249.html)
там в частности определяется момент инерции тоже не совсем простого сечения.
Вот здесь http://otvet.mail.ru/question/33111076
дана другая формула для момента сопротивления трубы, а именно: W=(D^3-d^3)*3,14/32.
Объясните, пожалуйста, правильность этой формулы (или неправильность).
Формула из приведенного вами источника неправильная (ею можно пользоваться только для приблизительных вычислений) и проверить это легко.
Чтобы определить момент инерции сечения трубы, достаточно вычесть из момента инерции стержня круглого сечения (тут при вычислениях используется наружный диаметр трубы) момент инерции отверстия (внутренний диаметр, ведь внутри трубы никакого материала нет, на то она и труба). После простейших математических преобразований мы получим формулу момента инерции трубы, приведенную в таблице.
А для того, чтобы определить момент сопротивления, нужно момент инерции разделить на максимальное расстояние от центра тяжести до самой дальней точки сечения, соответственно на D/2, или умножить на 2/D.
В итоге получить указанную вами формулу невозможно и чем толще будет стенка трубы, тем больше будет погрешность при использовании этой формулы.
Не смог найти инфо о том в каких единицах (мм, см, м) все значения в формулах.
Попробовал посчитать Wz для уголка 210х90мм (если у швел.24П срезать верхнюю полку), получилось 667,5 см3, при условии что все значения в см.
Для примера, у швел.24П (до срезания полки) Wx(Wz)=243 см3.
Это общие формулы. В каких единицах подставите значения, в таких и получите результат, только само собой уже в кубических. Но если начали подставлять, например, в сантиметрах, то так и нужно продолжать.
У швеллера без полки момент сопротивления по умолчанию не может быть больше чем у целого швеллера. Для приблизительного определения момента сопротивления швеллера без полки вы можете воспользоваться формулами для неравнополочного уголка (только для определения Wz, для Wy эти формулы не подойдут).
Если сечение трубы ослаблено несколькими значительными отверстиями, как учесть это при расчёте момента инерции и момента сопротивления? Труба 32.39см и в ней 9 отв. диам.2.8см в сечении(шаг отвермтий 10см. по длине трубы).
Неравноплечий уголок.При вычислении Wy не y,а H-y
Не пойму, о чем вы. Определение момента сопротивления относительно оси у в таблицах вообще не приводится.
Для треугольников при вычислении Wzп h в квадрате.
Все верно. Теперь понял, о чем вы. Более корректно было бы указать момент сопротивления для верхней и для нижней части сечения, а я указал только для нижней. Ну а при определении момента сопротивления треугольников банально пропущен квадрат.
Исправил. Спасибо за внимательность.
Здравствуете! Кто может помочь о правильности расчета http://ej.kubagro.ru/2011/02/pdf/19.pdf
я не могу понят откуда значение берется момент сопротивления. Помогите пожалуйста!
Что именно вам не понятно (вычитывать весь документ у меня нет времени). Если речь о балке, лежащей на упругом основании, то скорее всего балка эта имеет прямоугольное сечение (см. таблицу 1).
Если максимально упростить, то:
Сначала определяете момент инерции отверстия (для упрощения расчетов его можно принимать прямоугольным). Затем из момента инерции швеллера вычитаете момент инерции отверстия, затем делите полученный момент инерции на половину высоты швеллера и получаете момент сопротивления.
здравствуйте,Сергей. я прочитал некоторые ваши статьи,очень интересно и понятно(в основном).я хотел бы рассчитать балку двутаврового сечения,но не могу найти Ix и Wx. дело в том что она не стандартная,я её буду делать сам,из дерева.можете ли вы мне помочь? я оплачу.только я не смогу оплатить электронными средствами т.к. не знаю как этим пользоваться.
Игорь, я отправил вам письмо.
Уважаемый доктор, желаю вам всего найлучшего. Помогите пожалуйста, какими формулами нужны для подбора и проверки на прочность балку следующих сечений,:Швеллер,уголок и бульбовый профиль, имея допускаемый момент сопротивления W=58,58cm3. спасибо большое и жду вашу помощь.
Посмотрите статью «Расчет стальных однопролетных балок с шарнирными опорами при изгибе согласно СП 16.13330.2011», там все достаточно подробно расписано.
Здравствуйте пожалуйста подскажите почему Ql^2/8 почему деленная на 8 и почему иногда делим на 6 и 24 итд подскажите пожалуйста только это не понял
Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).
iSopromat.ru
Пример решения задачи по расчету минимального момента сопротивления Wx сечения стальной балки, обеспечивающего её прочность.
Задача
Для заданной стальной балки требуется определить минимальный момент сопротивления сечения Wx для последующего подбора двутавра и расчета размеров других сечений балки по условию прочности.
Решение
Предыдущие пункты решения задачи:
Прежде чем приступать к расчету размеров сечений балки обеспечивающих ее прочность, определим минимально необходимую величину момента сопротивления сечения Wx.
Момент сопротивления сечений зависит от их формы, размеров и расположения.
Его минимально необходимая величина рассчитывается из условия прочности по нормальным напряжениям при изгибе:
По построенной эпюре Mx видно, что максимальная величина изгибающего момента составляет 47,6 кНм, поэтому
Теперь можно перейти к определению размеров поперечного сечения балки:
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Расчетные моменты инерции и сопротивления
для геометрических форм конструкций
Приведены наиболее часто употребляемые формы сечений строительных конструкций.
ФОРМЫ СЕЧЕНИЯ, ПЛОЩАДИ СЕЧЕНИЯ, МОМЕНТЫ ИНЕРЦИИ И МОМЕНТЫ СОПРОТИВЛЕНИЯ
ДЛЯ ОСНОВНЫХ ГЕОМЕТРИЧЕСКИХ ФОРМ КОНСТРУКЦИЙ
Обычно, этих формул достаточно для большинства расчетов, но случаи бывают всякие и сечение конструкции может быть не такой простой геометрической формы или положение осей, относительно которых нужно определить момент инерции или момент сопротивления, может быть не таким, тогда можно воспользоваться следующими формулами:
Как видно из таблицы, высчитывать момент инерции и момент сопротивления для неравнополочных уголков достаточно сложно. Поэтому для неравнополочных и равнополочных прокатных уголков, а также для швеллеров, двутавров и профильных труб есть сортаменты. В сортаментах значения момента инерции и момента сопротивления приводятся для каждого профиля.
Если же у вас сложносоставное сечение, можете воспользоваться следующими рекомендациями.
При определении момента инерции сечений сложных геометрических форм сначала сложная фигура разбивается на простейшие, затем определяются площади сечения этих фигур и моменты инерции простейших фигур, затем площади простейших фигур умножаются на квадрат расстояния от общего центра тяжести сечения до центра тяжести простейшей фигуры. Момент инерции простейшей фигуры в составе сложного сечения равен моменту инерции фигуры + квадрат расстояния умноженный на площадь. Затем полученные моменты инерции суммируются и получается момент инерции сложного сечения. Но это максимально упрощенные формулировки.
ИЗМЕНЕНИЯ МОМЕНТОВ ИНЕРЦИИ И СОПРОТИВЛЕНИЯ
В ЗАВИСИМОСТИ ОТ ПОЛОЖЕНИЯ ОСЕЙ
СОПРОМАТ ОН-ЛАЙН
Меню сайта
Программы по сопромату (построение эпюр, различные калькуляторы, шпоры и другое).
Базовый курс лекций по сопромату, теория, практика, задачи.
1. Геометрические характеристики сечений.
1.1. Статический момент сечения.
При дальнейшем изучении вопросов прочности, жесткости и устойчивости нам придется иметь дело с некоторыми геометрическими характеристиками сечения: статическими моментами, моментами инерции, моментами сопротивления.
Статическим моментом Sx сечения (фигуры) относительно какой-либо оси х (рис.1.1) называется геометрическая характеристика, определяемая интегралом вида
(1.1)
Единицей измерения статического момента является единица длины в третьей степени, обычно см 3 (см в третьей степени). Статический момент может быть положительным, отрицательным и, в частности, равным нулю. Если отождествить площадь с силой, действующей перпендикулярно плоскости чертежа, то интеграл (4.1) можно рассматривать как сумму моментов сил относительно оси х. По известной из теоретической механике теореме о моменте равнодействующей можно написать
(1.2)
Из формулы (1.2) следует формула определения ординаты центра тяжести
Аналогично, статический момент относительно оси у равен
(1.4)
Центр тяжести обладает тем свойством, что если тело опереть в этой точке, то оно будет находиться в равновесии.
Из формулы (1.2) и (1.4) следует, что если оси х и у проходят через центр тяжести фигуры, то статический момент относительно этих осей равен нулю. Такие оси называются центральными осями.
Если фигуру можно представить в виде отдельных простых фигур (квадратов, треугольников и т.д.), для которых известны положения центров тяжести, то в этом случае статический момент всей фигуры можно получить как сумму статических моментов этих простых фигурю Это непостредственно следует из свойств определенного интеграла.
Если фигура имеент ось симметрии, то последняя всегда проходит через центр тяжести фигуры, а потому статический момент фигуры относительно оси симметрии всегда равен нулю.
Во многих случаях вместо простых интегралов вида (1.1) и (1.4) удобнее иметь дело с двойными интегралами вида:
(1.1a)
(1.4a)
Пример 1.1. Определить положение центра тяжести сечения, показанного на рис. 1.2, а.
Решение. Разбиваем сечение на два прямоугольника. Проводим вспомогательные оси х и у.
По формулам (1.3) и (1.5) получим:
Пример 1.2. Вычислить ординату центра тяжести половины круга (рис. 1.2, б).
Решение. Пользуемся формулой
Вычисляем числитель, используя уравнение окружности х 2 + y 2 = R 2 :
Полезные ссылки
Основы сопромата, момент сопротивления
10. Определение момента сопротивления.
Для абсолютного большинства строительных материалов значение расчетного сопротивления уже определено эмпирическим путем, поэтому определить параметры сечения, на которое действуют растягивающие или сжимающие напряжения, не сложно. Значения расчетных сопротивлений для большинства строительных материалов есть в разного рода справочниках, тем не менее при большом желании эти значения можно определить и самому.
Рисунок 10.1. Внутренние напряжения в поперечном сечении балки.
В этом случае, если нам известна нагрузка и расчетное сопротивление материала, то можно легко определить площадь сечения конструкции:
S ≥ Q / R (10.1)
Пример №2. На поперечное сечение балки действует изгибающий момент, который можно заменить парой сил (рисунок 8.2) или распределенной нагрузкой, изменяющейся по высоте (рисунок 8.3). Т.е. растягивающие и сжимающие нормальные напряжения изменяются по высоте балки и поэтому использовать приведенную выше формулу нельзя, нужно как-то учитывать изменение внутренних напряжений в зависимости от высоты балки.
Рисунок 8.2. Увеличение значения сил при уменьшении высоты балки при одинаковом вращающем моменте.
Рисунок 8.3. Изменение распределенной нагрузки по высоте балки.
Для наглядности на пару минут вернемся к нашей линейке. Если мы возьмем линейку, которая лежала на книгах плашмя, поставим ее и приложим к линейке точно такую же нагрузку как и к лежащей плашмя линейке, то линейка вообще не прогнется, точнее прогнется, но увидеть это невооруженным глазом невозможно. В чем же дело? ведь ни нагрузка, ни длина балки и, соответственно, изгибающий момент, ни материал балки, ни сечение балки не изменились, изменилось только положение балки в пространстве. Теория сопротивления материалов объясняет это чудо так: при действии на балку нагрузки балка деформируется (прогибается), при этом верхняя часть балки сжимается и в этой части возникают сжимающие напряжения, а нижняя часть балки растягивается и в этой части возникают растягивающие напряжения. Эти напряжения называются нормальными, так как они направлены перпендикулярно поперечному сечению балки (по нормали).
Конечно же при деформации балки в любом поперечном сечении возникают и касательные напряжения, направленные параллельно поперечному сечению (значение этих напряжений можно определить по эпюре «Q», рисунки 7.1 и 7.2), однако значение касательных напряжений при простом загружении в сечении, где действует максимальный изгибающий момент, равно нулю. При этом предполагается, что в некоторой точке (а точнее в ряде точек, которые находятся на оси z) поперечного сечения балки никаких деформаций нет, т.е. значение нормальных сжимающих или растягивающих напряжений равно 0, при этом максимальные сжимающие напряжения возникают в самом верхнем слое балки, а максимальные растягивающие напряжения возникают в самом нижнем слое балки. Графически это выглядит так:
Рисунок 10.2. Напряжения, возникающие в поперечном сечении балки при действии изгибающего момента.
Так как мы предполагаем для конструкции из однородного материала, что растягивающие напряжения суммарно равны сжимающим напряжениям и при этом площадь на которую действуют растягивающие напряжения, равна площади, на которую действуют сжимающие напряжения. То определить значение момента сопротивления мы можем следующим образом. Сначала сведем линейно-изменяющиеся нормальные напряжения к равнодействующим, обозначим их как Р:
Рσс = Рσр = P = (bh/2)σ/2 = bhσ/4 (10.2)
Тогда момент сопротивления для двух равнодействующих сил, действующих относительно центра тяжести сечения, составит:
W’ = 2Py (10.3)
Как известно на все тела, живые и неживые, в пределах планеты Земля действует сила тяжести. Например, если линейка которую мы все никак не можем доломать, весит 50 г, то это означает, что на линейку действует сила тяжести 0.5 Н или 0.05 кгс. Кроме того, пока никто не опровергнул и предположения, что на каждый отдельный атом, молекулу и любую другую часть материи действует своя сила тяжести, при этом общая сила тяжести линейки равна сумме сил тяжести всех атомов или других частиц, входящих в состав этой линейки. Далее, чтобы линейка не падала на землю под воздействием силы тяжести, мы должны сделать опору для линейки хотя бы в одной точке. Точка эта не простая, получается, что сумма моментов, возникающих при действии сил тяжести, действующих на каждую частицу линейки, в этой точке равна нулю. Таким образом соблюдается условие равновесия системы. Вполне логично эта точка называется центром тяжести. Например, для нашей линейки центр тяжести находится в геометрическом центре линейки. Но сейчас нас интересует центр тяжести не прямоугольника, а треугольника, который символизирует внутренние напряжения или линейно изменяющуюся равномерную нагрузку. Как утверждает наука геометрия, центр тяжести треугольника находится на пересечении медиан углов треугольника, при этом расстояние от любого острого угла до высоты, опущенной на катет, равно 2/3 длины этого катета (рисунок 8.2). Так как мы рассматриваем не все поперечное сечение балки, а только верхнюю (или нижнюю половину), то
у = (h/2)(2/3) = h/3 (10.4)
Теперь, когда мы определили значение плеча силы, мы можем подставить его в формулу (4.3) и определить момент сопротивления для нашей балки прямоугольного сечения относительно оси z:
W’z = 2(bhσ/4)h/3 = σbh 2 /6 (10.5)
Примечание: как правило момент сопротивления рассматривается как геометрическая характеристика сечения. Т.е. нормальные напряжения в формуле опускаются (Wz = W’z/σ). Почему, мы узнаем чуть позже.
Момент сопротивления сечения можно определять и как отношение момента инерции относительно оси z к максимальному расстоянию от оси z до наиболее удаленных точек сечения.
Wz = Iz / (h/2) = (bh 3 /12)/(h/2) = bh 2 /6 (10.6)
Итак, в ходе долгих, хотя и не сложных вычислений мы определили, что
М = W’ или M/W’ = 1 или Мσ/W = σ (10.7)
А так как внутренние нормальные напряжения σ должны быть меньше или в крайнем случае равны расчетному сопротивлению материала (σ ≤ R), то формула (4.7) будет иметь несколько иной вид:
М/W = Mσ/W’ ≤ R или W ≥ M/R (10.8)
Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»
Для терминалов номер Яндекс Кошелька 410012390761783
Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV
Просто благодарна вам за ваш труд, просто восполняю пробелы в знаниях, хотя, имею сертификат конструктора. Сделала небольшой перевод на карту ПБ Украины.
Инна, и вам большое спасибо.
Напишите номер банковские карты
Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).