Как посчитать формулу в питоне

Math — математические функции в Python

Что такое модуль?

В C и C++ есть заголовочные файлы, в которых хранятся функции, переменные классов и так далее. При включении заголовочных файлов в код появляется возможность не писать лишние строки и не использовать одинаковые функции по несколько раз. Аналогично в Python для этого есть модули, которые включают функции, классы, переменные и скомпилированный код. Модуль содержит группу связанных функций, классов и переменных.

Функции представления чисел

ceil() и floor() — целая часть числа

Сeil() и floor() — функции общего назначения. Функция ceil округляет число до ближайшего целого в большую сторону. Функция floor убирает цифры десятичных знаков. Обе принимают десятичное число в качестве аргумента и возвращают целое число.

Пример:

Функция fabs() — абсолютное значение

Пример:

factorial() — функция факториала

Эта функция принимает положительное целое число и выводит его факториал.

Пример:

Примечание: при попытке использовать отрицательное число, возвращается ошибка значения ( Value Error ).

Пример:

Функция fmod() — остаток от деления

Пример:

Функция frexp()

Как посчитать формулу в питоне. Смотреть фото Как посчитать формулу в питоне. Смотреть картинку Как посчитать формулу в питоне. Картинка про Как посчитать формулу в питоне. Фото Как посчитать формулу в питоне

Пример:

Функция fsum() — точная сумма float

Вычисляет точную сумму значений с плавающей точкой в итерируемом объекте и сумму списка или диапазона данных.

Пример:

Функции возведения в степень и логарифма

Функция exp()

Пример:

Функция expm1()

Пример:

Функция log() — логарифм числа

Функция log(x[,base]) находит логарифм числа x по основанию e (по умолчанию). base — параметр опциональный. Если нужно вычислить логарифм с определенным основанием, его нужно указать.

Пример:

Функция log1p()

Пример:

Функция log10()

Вычисляет логарифм по основанию 10.

Пример:

Функция pow() — степень числа

Пример:

Функция sqrt() — квадратный корень числа

Эта функция используется для нахождения квадратного корня числа. Она принимает число в качестве аргумента и находит его квадратный корень.

Пример:

Тригонометрические функции

В Python есть следующие тригонометрические функции.

ФункцияЗначение
sinпринимает радиан и возвращает его синус
cosпринимает радиан и возвращает его косинус
tanпринимает радиан и возвращает его тангенс
asinпринимает один параметр и возвращает арксинус (обратный синус)
acosпринимает один параметр и возвращает арккосинус (обратный косинус)
atanпринимает один параметр и возвращает арктангенс (обратный тангенс)
sinhпринимает один параметр и возвращает гиперболический синус
coshпринимает один параметр и возвращает гиперболический косинус
tanhпринимает один параметр и возвращает гиперболический тангенс
asinhпринимает один параметр и возвращает обратный гиперболический синус
acoshпринимает один параметр и возвращает обратный гиперболический косинус
atanhпринимает один параметр и возвращает обратный гиперболический тангенс

Пример:

Функция преобразования углов

Эти функции преобразуют угол. В математике углы можно записывать двумя способами: угол и радиан. Есть две функции в Python, которые конвертируют градусы в радиан и обратно.

Пример:

Математические константы

Источник

Вычисле­ния в python

Арифмети­ческие операции в python

Начнём со всем знакомой чет­вер­ки:

print ( 10 / 2 )
# 5.0
print ( 100 / 3 )
# 33.333333333333336
print ( 21 / 4 )
# 5.25
print ( 23 / 7 )
# 3.2857142857142856

А как обстоит дело с дробями? Точно также:

0.75 = 0.5 + 0.25 = 1/2 + 1/4 = 0.11

Возникает вопрос, как пере­вес­ти в двоичную систему такие дроби: 1/3

Это может продолжаться беско­неч­но долго. Поэтому python прерывает выполнение таких вычислений и часто выдает такие приколы:

print ( 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 )
# 0.7999999999999999
print ( 0.1 + 0.2 )
# 0.30000000000000004
print ( 7 / 3 )
# 2.3333333333333335

Еще немного математики. Математика в каждый дом!

# Остаток от деления
print ( 11 % 4 )
# 3
print ( 101 % 7 )
# 3
print ( 34 % 5 )
# 4

# Деление нацело
print ( 20 // 4 )
# 5
print ( 129 // 11 )
# 11
print ( 100 // 61 )
# 1

Операции сравнения в python

# Операция равенства: True, если X равен Y
print ( 10 == 10 )
# True
print ( 666 == 661 )
# False

# Операция больше: True, если X больше Y
print ( 120 > 2 )
# True
print ( 1000 > 1999 )
# False

# Операция меньше: True, если X меньше Y
print ( 121 120 )
# False
print ( 0 1 )
# True

# Операция меньше или равно: True, если X меньше или равен Y
print ( 6 6 )
# True
print ( 5 2 )
# False

# Операция больше или равно: True, если X больше или равен Y
print ( 1000 >= 10000 )
# False
print ( 9999 >= 9999 )
# False

Логические операции в python

# Оператор «and» или конъюнкция.
# True, если и выражение X, и выражение Y равны True
print ( 10 == 10 and 10 > 2 )
# True
print ( 666 == 661 and 9 > 0 )
# False

# Оператор «or» или дизъюнкция.
# True, если или выражение X, или выражение Y равны True
print ( 666 == 661 or 9 > 0 )
# True
print ( 666 == 661 or 9 0 )
# False

# Оператор «not» или инверсия меняет значение на противоположное.
# True, если выражение X равно False
print ( not 120 > 2 )
# False
print ( not 1000 999 )
# True
print ( not ( 121 121 and 10 == 2 ))
# True

Округление чисел в python

Всё дело в округлении! В python есть несколько заме­ча­тель­ных функций, которые округ­ляют число до указанного знака. Одной из таких функций является round :

pi = 3.14159265358979323846264338327
print (round(pi, 1 ))
# 3.1
print (round(pi, 2 ))
# 3.14
print (round(pi, 3 ))
# 3.12
print (round(pi, 4 ))
# 3.1416
print (round(pi, 10 ))
# 3.1415926536
print (round(pi, 15 ))
# 3.141592653589793

Рассмотрим любопытный пример:

print (round( 2.5 ))
# 2
print (round( 3.5 ))
# 4

print (round( 10.51213 ))
# 11
print (round( 23.5 ))
# 24
print (round( 22.5 ))
# 22

Модуль math

Модуль math представляет собой набор математических формул. Рассмотрим несколько примеров:

print ( dir (math))
[‘__doc__’, ‘__loader__’, ‘__name__’, ‘__package__’, ‘__spec__’, ‘acos’,
‘acosh’, ‘asin’, ‘asinh’, ‘atan’, ‘atan2’, ‘atanh’, ‘ceil’, ‘copysign’,
‘cos’, ‘cosh’, ‘degrees’, ‘e’, ‘erf’, ‘erfc’, ‘exp’, ‘expm1’, ‘fabs’,
‘factorial’, ‘floor’, ‘fmod’, ‘frexp’, ‘fsum’, ‘gamma’, ‘gcd’, ‘hypot’,
‘inf’, ‘isclose’, ‘isfinite’, ‘isinf’, ‘isnan’, ‘ldexp’, ‘lgamma’, ‘log’,
‘log10’, ‘log1p’, ‘log2’, ‘modf’, ‘nan’, ‘pi’, ‘pow’, ‘radians’, ‘remainder’,
‘sin’, ‘sinh’, ‘sqrt’, ‘tan’, ‘tanh’, ‘tau’, ‘trunc’]
import math

# Синус 3.14 радиан
print (math. sin ( 3.14 ))
# 0.0015926529164868282

# Косинус 1.1 радиан
print (math. cos ( 1.1 ))
# 0.4535961214255773

# Возведение экспоненты в 3 степень
print (math. exp ( 3 ))
# 20.085536923187668

# Натуральный логарифм 61
print (math. log ( 61 ))
# 4.110873864173311

# Факториал четырех
print (math. factorial ( 4 ))
# 24

# Извлечение квадратного корня
print (math. sqrt ( 9 ))
# 3.0

# Перевод радиан в градусы
print (math. degrees ( 1.572 ))
# 90.06896539456541

И это далеко не всё! Остальные функции я предлагаю вам протестировать самостоятельно : )

Источник

Модуль Math — математика в Python на примерах (Полный Обзор)

Как посчитать формулу в питоне. Смотреть фото Как посчитать формулу в питоне. Смотреть картинку Как посчитать формулу в питоне. Картинка про Как посчитать формулу в питоне. Фото Как посчитать формулу в питоне

Как посчитать формулу в питоне. Смотреть фото Как посчитать формулу в питоне. Смотреть картинку Как посчитать формулу в питоне. Картинка про Как посчитать формулу в питоне. Фото Как посчитать формулу в питоне

Библиотека Math в Python обеспечивает доступ к некоторым популярным математическим функциям и константам, которые можно использовать в коде для более сложных математических вычислений. Библиотека является встроенным модулем Python, поэтому никакой дополнительной установки через pip делать не нужно. В данной статье будут даны примеры часто используемых функций и констант библиотеки Math в Python.

Содержание статьи

Специальные константы библиотеки math

В библиотеке Math в Python есть две важные математические константы.

Число Пи из библиотеки math

Первой важной математической константой является число Пи (π). Оно обозначает отношение длины окружности к диаметру, его значение 3,141592653589793. Чтобы получить к нему доступ, сначала импортируем библиотеку math следующим образом:

Затем можно получить доступ к константе, вызывая pi :

Данную константу можно использовать для вычисления площади или длины окружности. Далее представлен пример простого кода, с помощью которого это можно сделать:

Есть вопросы по Python?

На нашем форуме вы можете задать любой вопрос и получить ответ от всего нашего сообщества!

Telegram Чат & Канал

Вступите в наш дружный чат по Python и начните общение с единомышленниками! Станьте частью большого сообщества!

Паблик VK

Одно из самых больших сообществ по Python в социальной сети ВК. Видео уроки и книги для вас!

Число Эйлера из библиотеки math

Число Эйлера (е) является основанием натурального логарифма. Оно также является частью библиотеки Math в Python. Получить доступ к числу можно следующим образом:

В следующем примере представлено, как можно использовать вышеуказанную константу:

Экспонента и логарифм библиотеки math

В данном разделе рассмотрим функции библиотеки Math в Python, которые используются для нахождения экспоненты и логарифмов.

Функция экспоненты exp() в Python

Метод может быть использован со следующим синтаксисом:

Параметр x может быть положительным или отрицательным числом. Если x не число, метод возвращает ошибку. Рассмотрим пример использования данного метода:

Мы объявили три переменные и присвоили им значения с различными числовыми типами данных. Мы передали значения методу exp() для вычисления их экспоненты.

Мы также можем применить данный метод для встроенных констант, что продемонстрировано ниже:

При передаче не числового значения методу будет сгенерирована ошибка TypeError, как показано далее:

Функция логарифма log() в Python

Функция log10() в Python

Метод log10() возвращает логарифм по основанию 10 определенного числа. К примеру:

Функция log2() в Python

Функция log2() возвращает логарифм определенного числа по основанию 2. К примеру:

Функция log(x, y) в Python

Функция log1p(x) в Python

Функция log1p(x) рассчитывает логарифм(1+x), как представлено ниже:

Арифметические функции в Python

Арифметические функции используются для представления чисел в различных формах и осуществления над ними математических операций. Далее представлен перечень самых популярных арифметических функций:

В следующем примере показано использование перечисленных выше функций:

К числу других математических функций относятся:

Примеры данных методов представлены ниже:

Возведение в степень

Тригонометрические функции в Python

Модуль math в Python поддерживает все тригонометрические функции. Самые популярные представлены ниже:

Рассмотрим следующий пример:

Обратите внимание, что вначале мы конвертировали значение угла из градусов в радианы для осуществления дальнейших операций.

Конвертация типов числа в Python

Python может конвертировать начальный тип числа в другой указанный тип. Данный процесс называется «преобразованием». Python может внутренне конвертировать число одного типа в другой, когда в выражении присутствуют смешанные значения. Такой случай продемонстрирован в следующем примере:

В вышеприведенном примере целое число 3 было преобразовано в вещественное число 3.0 с плавающей точкой. Результатом сложения также является число с плавающей точкой (или запятой).

Однако иногда вам необходимо явно привести число из одного типа в другой, чтобы удовлетворить требования параметра функции или оператора. Это можно сделать с помощью различных встроенных функций Python.

Вещественное число было преобразовано в целое через удаление дробной части и сохранение базового числа. Обратите внимание, что при конвертации значения в int подобным образом число будет усекаться, а не округляться вверх.

Заключение

Библиотека Math предоставляет функции и константы, которые можно использовать для выполнения арифметических и тригонометрических операций в Python. Библиотека изначально встроена в Python, поэтому дополнительную установку перед использованием делать не требуется. Для получения дополнительной информации можете просмотреть официальную документацию.

Как посчитать формулу в питоне. Смотреть фото Как посчитать формулу в питоне. Смотреть картинку Как посчитать формулу в питоне. Картинка про Как посчитать формулу в питоне. Фото Как посчитать формулу в питоне

Являюсь администратором нескольких порталов по обучению языков программирования Python, Golang и Kotlin. В составе небольшой команды единомышленников, мы занимаемся популяризацией языков программирования на русскоязычную аудиторию. Большая часть статей была адаптирована нами на русский язык и распространяется бесплатно.

E-mail: vasile.buldumac@ati.utm.md

Образование
Universitatea Tehnică a Moldovei (utm.md)

Источник

Символьные вычисления средствами Python. Часть1. Основы

Как посчитать формулу в питоне. Смотреть фото Как посчитать формулу в питоне. Смотреть картинку Как посчитать формулу в питоне. Картинка про Как посчитать формулу в питоне. Фото Как посчитать формулу в питоне

При решении задач математического моделирования процессов и объектов часто очень практично использовать алгоритмы на языке Python с использованием символьных вычислений. Основываясь на библиотеке SymPy, Python с успехом справляется с решением уравнений и систем, интегрированием и дифференцированием, вычислением пределов, разложением в ряд и суммированием рядов, упрощением выражений, выполняет поиск решения дифференциальных уравнений и систем.

При использовании символьных вычислений пользователю предоставляется возможность управлять работой программы в процессе ее исполнения путём ввода любых допустимых функций с заданным количеством переменных.

Как преподаватель дисциплины «Компьютерная техника и программирование», в модуле, посвященном программированию на языке Python, я знакомлю студентов с возможностями этого языка для научных исследований. Вашему вниманию представляется цикл статей, в которых можно ознакомиться с символьными вычислениями на Python. Хочу сразу предупредить, что данные статьи не претендуют на абсолютную уникальность, так как собраны на основании материалов из различных источников, их цель – обучить студентов основам символьных вычислений.

Самым первым шагом на пути к символьным вычислениям является импортирование функций модуля SymPy с помощью pip, системы управления пакетами Python. Если вы с этим справились, сразу перейдем к объявлению переменных.

Примечание. Для сокращения записи во всех следующих примерах не приводится первая строка: from sympy import *

Явное объявление символьных переменных

Для символьных вычислений с помощью модуля SymPy символьные переменные и функции должны быть объявлены как таковые. В программах для математических вычислений, таких как Mathematica или Maple, переменные сразу рассматриваются как символьные. В Python же их необходимо принудительно объявить символьными, и сделать это можно несколькими путями. Самым простым будет использование функций symbols() или var(). Первая функция возвращает ссылку на символьный объект в виде какой-либо переменной. Вторая, без присваивания создает символьную переменную.

Главное отличие между функциями symbols() и var() состоит в том, первая функция возвращает ссылку на символьный объект. Для использования в дальнейшем, ее нужно присвоить какой-либо переменной. Вторая, без присваивания, создает символьную переменную.
В функциях symbols() и var() можно объявлять символьные переменные с индексом:

Также можно назначить тип и накладывать ограничения на символьные переменные прямо в функциях symbols() и var(). Иногда без таких ограничений очевидные преобразования не работают, например, сравните:

Чтобы создать контейнер для одиночного символа, используем аргумент seq=True:

Определение действительных значений для символьных переменных:

Функция S()

Иногда символьные выражения могут быть проинтерпретированы как числовые константы Python, а не SymPy. Поэтому для объявления символьных переменных, а также для преобразования числовых констант в символьные, применяют функцию S(), например, сравним:

Разница между постоянной Python и символьной состоит в том, что символьная константа может быть вычислена с заданной степенью точности, как показано в следующем примере в сравнении со стандартной функцией round():

Cимвольные имена

Если в текущей сессии необходимо использовать символьную математику постоянно, то можно импортировать общепринятые символьные имена из модуля sympy.abc:

Имя переменной из пространства имен можно удалить командой del имя1, имя2. :

Для восстановления значений стандартных констант, а также имен некоторых функций, нужно повторно загрузить модуль sympy.

Метод subs(. )

Следует помнить, что при записи символьного выражения может автоматически выполняться его упрощение, например:

Метод subs(. ) используется для вычисления символьного выражения при заданных значениях переменных, например:

Если в методе subs использовать два аргумента, то они интерпретируются как subs(old,new), т.е. старый идентификатор old заменяется новым new. Аргумент метода subs() может быть последовательностью, которая должна содержать пары (old,new), а может быть символьным выражением, например:

Обратим ваше внимание на следующую особенность работы с переменными (символьными и обычными переменными Python). Выполним следующий код:

Здесь действует правило: если переменная изменилась, то созданное ранее выражение, содержащее эту переменную, не пересчитывается автоматически. Это правило срабатывает и для обычных переменных Python.

Операции с дробями

Модуль SymPy может проводить вычисления с дробями и приводить их к общему знаменателю, например, сравните:

Функции Rational(числитель, знаменатель) и Integer(. ) используются для создания рациональных дробей без десятичного округления:

Округления вычислений

В символьных вычислениях работает правило – если ничего не сказано, не делать никаких округлений. Посмотрите, как в первом случае Python преобразует выражение, но оставит в записи ответа квадратный корень и не выполнит никаких округлений, а во втором, так как одно из чисел задано с десятичной точкой, результат будет приближенным:

Для любого символьного объекта существует метод evalf(. )(evaluate float), который возвращает его десятичное представление:

В методе evalf([n. ]) можно использовать аргумент, задающий точность результата (n = количество значащих цифр)

Также всегда нужно помнить, что вещественная арифметика не возвращает точный результат, сравните:

Если известно, что результат содержит погрешность вычислений, то с помощью опции chop=True метода evalf() ее можно удалить. Очень маленькое значение вещественной или мнимой части результата в этом случае заменяется нулем. Возьмем предыдущий пример:

Бесконечность

После выполнения первой строки from sympy import * становится доступен символ бесконечности – oo (две буквы „o‟), с которым тоже можно выполнять определенные операции:

Символ бесконечности в основном используется функциями limit() и integrate() при задании пределов интегрирования, о чем мы поговорим в одной из следующих статей.

Вывод

Рассмотренные в статье символьные вычисления отличаются от числовых методов тем, что результаты можно и дальше исследовать, например, определять экстремумы функций, решать уравнения со вложенными переменными и так далее.

Надеюсь, моя статья будет полезна всем интересующимся программированием на языке Python, студентам и тем, кто занимается научными исследованиями.

Источник

Математические вычисления в Python 3

Программирование невозможно представить без работы с числами. Размеры экрана, выбор цвета путем присвоения числовых кодов, географическое расположение, деньги и очки, продолжительность видео – для всего этого используются числа.

Потому умение выполнять математические операции очень важно для программирования. Конечно, чем выше у вас навык математических вычислений, тем лучше для вас; однако совсем не обязательно уметь выполнять сложнейшие вычисления, чтобы быть хорошим программистом. Если у вас нет опыта работы в области математики, старайтесь представлять математику как инструмент или как способ улучшить ваше логическое мышление.

Данное руководство научит вас работать с двумя наиболее распространёнными числовыми типами данных Python:

Операторы Python

Оператор – это символ или функция, которая выполняет то или иное действие над данными. К примеру, символ + – это оператор сложения.

В Python присутствуют как общие, так и специальные математические операторы.

Ниже приведена таблица наиболее распространённых математических операторов Python.

ОперацияРезультат
x + yСложение (сумма x и y)
x – yВычитание (разница между x и y)
-xСмена знака x
+xТождественность x
x * yУмножение x на y
x / yДеление x на y
x // yПолучение целой части от деления x на y
x % yОстаток от деления x / y
x ** yВозведение в степень

Также руководство охватывает использование операторов присваивания.

Сложение и вычитание

Операции сложения и вычитания в Python выполняются точно так же, как и в обычной математике. Вы даже можете использовать Python вместо калькулятора.

Также вы можете объявить переменные и указать их в функции print:

a = 88
b = 103
print(a + b)
191

Целые числа бывают положительными и отрицательными. Попробуйте сложить следующие числа:

Числа с плавающей точкой складываются аналогичным образом:

e = 5.5
f = 2.5
print(e + f)
8.0

В результате сложения чисел с плавающей точкой также получается число с плавающей точкой, потому Python выводит 8.0, а не 8.

Синтаксис вычитания отличается от сложения только оператором. Попробуйте отнять 32 из 75.67:

Примечание: Если в операции присутствует хотя бы одно число с плавающей точкой, в результате Python также выведет число с плавающей точкой.

Унарные арифметические операции

Унарное математическое выражение состоит только из одного компонента или элемента. В Python плюс и минус вместе со значением могут быть использованы в качестве одного элемента, это позволяет показать тождественность значения (+) или изменить его знак (-).

Тождественность используется нечасто. Плюс можно использовать с положительными числами:

Если вы используете плюс с отрицательным числом, он также вернёт тождественное (в этом случае – отрицательное) число.

Минус позволяет изменить знак. Если вы добавите минус к положительному значению, в результате будет отображено отрицательное значение:

Если добавить минус к отрицательному значению, в результате получится положительное число:

Умножение и деление

Операции умножения и деления, как сложение и вычитание, выполняются в Python так же, как в обычной математике. Для умножения Python использует *, для деления – /.

k = 100.1
l = 10.1
print(k * l)
1011.0099999999999

При делении в Python 3 частное всегда возвращается в виде числа с плавающей точкой, даже если вы делите целые числа:

m = 80
n = 5
print(m / n)
16.0

Это одно из главных различий между Python 2 и Python 3. Python 3 возвращает дробный результат, потому при делении 11 на 2 вы получите 5.5. В Python 2 деление привязано к типам данных, потому при делении целого числа невозможно получить число с плавающей точкой; поэтому при делении 11 на 2 Python 2 возвращает 5.

Читайте также: Python 2 vs Python 3

Когда числа по обе стороны символа деления являются целыми, выполняется деление floor, то есть, для фактора х Python 2 возвращает наибольшее целое число меньше или равное х. К примеру, при делении 5 / 2 таким числом будет 2.

Чтобы выполнить деление floor и получить только целую часть числа, Python 3 использует оператор //. К примеру, разделив 100//40, вы получите 2.

Деление по модулю

Оператор % – это модуль, который возвращает остаток от деления. К примеру, это позволяет найти числа, кратные одному и тому же числу.

o = 85
p = 15
print(o % p)
10

При делении 85 на 15 получается 5 и 10 в остатке.

Попробуйте разделить числа с плавающей точкой:

q = 36.0
r = 6.0
print(o % p)
0.0

Число 36.0 делится на 6.0 без остатка, потому в результате получился 0.0.

Возведение в степень

Оператор ** в Python возводит число в степень. Например, выражение 5 ** 3 значит, что 5 нужно возвести в третью степень. В математике это выглядит так: 5³. В Python можно получить тот же результат (125), умножив 5*5*5.

s = 52.25
t = 7
print(s ** t)
1063173305051.292

Приоритет операций

Как и в математике, в Python нужно помнить о том, что операции выполняются в порядке их приоритета, а не по порядку справа налево.

Сначала выполняется умножение (10*5=50), а затем сложение (10+50). Потому результат будет такой:

Чтобы сначала выполнить операцию сложения, а затем умножить полученный результат на 5, нужно взять сложение в скобки:

u = (10 + 10) * 5
print(u)
100

Математические операции имеют такой приоритет:

Операторы присваивания

Наиболее распространённым оператором присваивания является знак равенства (=). Он присваивает переменной слева значение справа. К примеру, в выражении v = 23 переменной v было присвоено значение 23.

В программировании часто используются составные операторы присваивания, которые выполняют операцию со значением переменной, а затем присваивают этой переменной полученное новое значение. Составные операторы объединяют арифметический оператор с оператором =. Например:

Составной оператор += выполнил сложение, а затем присвоил переменной w, значение, полученное в результате сложения.

Составные операторы часто используются в циклах.

for x in range (0, 7):
x *= 2
print(x)
0
2
4
6
8
10
12

Это позволяет автоматизировать процесс умножения чисел в заданном диапазоне.

В Python есть составные операторы присваивания для каждой математической операции:

Операторы присваивания позволяют постепенно увеличить или уменьшить значение, а также автоматизировать некоторые вычисления.

Заключение

Теперь вы умеете выполнять вычисления в Python. Читайте также:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *