глава 3 электромагнитное поле
§ 43. Электромагнитное поле
Явление электромагнитной индукции было открыто Фарадеем в 1831 г.
В том же году в Англии родился Джеймс Максвелл, ставший впоследствии учёным и сделавший важнейшее научное открытие, которое позволило глубже понять сущность явления электромагнитной индукции.
Напомним, что согласно явлению электромагнитной индукции при изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает индукционный ток. Но ток может возникнуть только при наличии электрического поля.
Предположение о возникновении электрического поля в результате изменения магнитного сразу вызвало у ученых ряд вопросов. Например: отличается ли оно от поля, созданного неподвижными электрическими зарядами?
Возникает ли это поле только в проводнике или существует и в пространстве вокруг него? Играет какую-либо роль в возникновении электрического поля замкнутый проводник, по которому протекает индукционный ток, или оно существует в пространстве независимо от наличия проводника?
Ответы на эти и другие вопросы были получены в 1865 г., когда Максвелл создал теорию электромагнитного поля. Он теоретически доказал, что всякое изменение со временем магнитного поля приводит к возникновению переменного электрического поля, а всякое изменение со временем электрического поля порождает переменное магнитное поле.
Эти порождающие друг друга переменные электрическое и магнитное поля образуют единое электромагнитов поле.
Источником электромагнитного поля служат ускоренно движущиеся электрические заряды.
Если электрические заряды движутся с ускорением, например колеблются, то создаваемое ими электрическое поле периодически меняется. Переменное электрическое поле создаёт в пространстве переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое и т. д.
Переменное электрическое поле называется вихревым, поскольку его силовые линии замкнуты подобно линиям индукции магнитного поля. Это отличает его от поля электростатического (т. е. постоянного, не меняющегося во времени), которое существует вокруг неподвижных заряженных тел. Силовые линии электростатического поля начинаются на положительных зарядах и заканчиваются на отрицательных.
Открытие электромагнитного поля позволило более детально описать механизм возникновения индукционного тока. Во всех опытах по получению индукционного тока (см. § 39) тем или иным образом изменялся магнитный поток, пронизывающий контур замкнутого проводника. При этом, согласно теории Максвелла, возникало вихревое электрическое поле, под действием которого свободные заряды, всегда имеющиеся в проводнике, приходили в направленное движение. В данном случае проводник, замкнутый на гальванометр, играл лишь роль индикатора, обнаруживающего возникшее в данной области пространства электрическое поле. Электрическое поле существует независимо от наличия проводника.
Созданная Максвеллом теория, позволившая предсказать существование электромагнитного поля за 22 года до того, как оно было обнаружено экспериментально, считается величайшим из научных открытий, роль которого в развитии науки и техники трудно переоценить.
Вопросы
1. Кем и когда была создана теория электромагнитного поля и в чём заключалась её суть?
2. Что служит источником электромагнитного поля?
3. Чем отличаются силовые линии вихревого электрического поля от силовых линий электростатического?
4. Опишите механизм возникновения индукционного тока, опираясь на знание о существовании электромагнитного поля.
Упражнение 40
В опыте, изображённом на рисунке 120, при замыкании ключа сила тока, протекающего через катушку А, в течение некоторого промежутка времени увеличивалась. При этом в цепи катушки С возникал кратковременный ток. Отличаются ли чем-нибудь электрические поля, под действием которых возникали токи в катушках А и С? Существовали бы эти поля в момент замыкания ключа, если бы не было катушки С с гальванометром?
Глава 3 электромагнитное поле
Если Вы не нашли темы для своего учебника, то можете добавить оглавление учебника и получить благодарность от проекта «Инфоурок».
В Москве подписан Меморандум о развитии и поддержке классного руководства
Время чтения: 1 минута
В пяти регионах России протестируют новую систему оплаты труда педагогов
Время чтения: 2 минуты
Меньше половины россиян довольны качеством обучения в школах
Время чтения: 2 минуты
Демоэкзамены включат в образовательные стандарты всех направлений подготовки СПО
Время чтения: 2 минуты
Кравцов призвал создать федеральную систему учета успеваемости
Время чтения: 1 минута
Путин призвал поддерживать сельские школы
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
ГДЗ контрольные и самостоятельные работы по физике 9 класс Громцева Экзамен
Опытнейший педагог-физик Ольга Ильинична Громцева разработала Контрольные и самостоятельные работы 9 класс. Пособие, выпущенное издательством Экзамен, используют учителя и девятиклассники для оперативного контроля.
Дополнение к учебнику Перышкина характеризуется:
• соответствием ФГОС;
• схожестью структуры с ГИА;
• согласованностью с учебником;
• полнотой комплекта тем;
• многовариантностью (по 4 каждой работы);
• разными уровнями заданий.
Многие ученики-девятиклассники выбирают предмет для ГИА, подготовка к событию требует упорной работы. Пособие подходит для тренировок и объективной самооценки, позволяет сформировать реальные ожидания результатов экзамена.
Предстоящая ГИА – предмет особой родительской тревоги, порой взрослые сомневаются в объективности оценок учителя физики, а знаний собственных для проверки недостаточно. С решебником всё проще – проблема определяется быстро.
Выбирают физику обычно те девятиклассники, которые сдают ЕГЭ при выпуске и используют результат для поступления на желаемые факультеты. Чтобы мечты сбывались, к аттестации готовиться нужно заблаговременно.
Контрольные по физике для девятиклассников и решебники к ним
По каждой из представленных тем в сборнике предложены проверочные, контрольные и самостоятельные в нескольких вариантах. Используя решебники к пособию, девятиклассники без проблем освоят даже самый непростой материал курса физики за девятый класс, применят теоретические знания на практике, научатся делать расчеты, сравнения и выводы.
Книга может с успехом применяться выпускниками одиннадцатого класса, которые предпочли физику в качестве дисциплины по выбору на ЕГЭ для системного и полного повторения практического курса физики за девятый класс.
Контрольные и самостоятельные работы по физике 9 класс. ФГОС Авторы: Громцева Издательство/год: Экзамен
Опытнейший педагог-физик Ольга Ильинична Громцева разработала Контрольные и самостоятельные работы 9 класс. Пособие, выпущенное издательством Экзамен, используют учителя и девятиклассники для оперативного контроля.
Дополнение к учебнику Перышкина характеризуется: • соответствием ФГОС; • схожестью структуры с ГИА; • согласованностью с учебником; • полнотой комплекта тем; • многовариантностью (по 4 каждой работы); • разными уровнями заданий.
Многие ученики-девятиклассники выбирают предмет для ГИА, подготовка к событию требует упорной работы. Пособие подходит для тренировок и объективной самооценки, позволяет сформировать реальные ожидания результатов экзамена.
Предстоящая ГИА – предмет особой родительской тревоги, порой взрослые сомневаются в объективности оценок учителя физики, а знаний собственных для проверки недостаточно. С решебником всё проще – проблема определяется быстро.
Выбирают физику обычно те девятиклассники, которые сдают ЕГЭ при выпуске и используют результат для поступления на желаемые факультеты. Чтобы мечты сбывались, к аттестации готовиться нужно заблаговременно.
По каждой из представленных тем в сборнике предложены проверочные, контрольные и самостоятельные в нескольких вариантах. Используя решебники к пособию, девятиклассники без проблем освоят даже самый непростой материал курса физики за девятый класс, применят теоретические знания на практике, научатся делать расчеты, сравнения и выводы.
Книга может с успехом применяться выпускниками одиннадцатого класса, которые предпочли физику в качестве дисциплины по выбору на ЕГЭ для системного и полного повторения практического курса физики за девятый класс.
§ 34. Магнитное поле
Из курса физики 8 класса вы знаете, что магнитное поле порождается электрическим током. Оно существует, например, вокруг металлического проводника с током. При этом ток создаётся электронами, направленно движущимися вдоль проводника. Магнитное поле возникает и в том случае, когда ток проходит через раствор электролита, где носителями зарядов являются положительно и отрицательно заряженные ионы, движущиеся навстречу друг другу.
Поскольку электрический ток — это направленное движение заряженных частиц, то можно сказать, что магнитное поле создаётся движущимися заряженными частицами, как положительными, так и отрицательными.
Напомним, что, согласно гипотезе Ампера, в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи.
На рисунке 85 показано, что в постоянных магнитах эти элементарные кольцевые токи ориентированы одинаково. Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления. Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.
1 В § 37 будет дано более точное название и определение этих линий.
Магнитную линию можно провести через любую точку пространства, в котором существует магнитное поле.
На рисунке 86 показано, что магнитная линия (как прямолинейная, так и криволинейная) проводится так, чтобы в любой точке этой линии касательная к ней совпадала с осью магнитной стрелки, помещённой в эту точку. Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.
Из рисунка 86 видно, что за направление магнитной линии в какой-либо её точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещённой в эту точку.
В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т. е. гуще, чем в тех местах, где поле слабее. Например, поле, изображённое на рисунке 87, слева сильнее, чем справа.
Таким образом, по картине магнитных линий можно судить не только о направлении, но и о величине магнитного поля (т. е. о том, в каких точках пространства поле действует на магнитную стрелку с большей силой, а в каких — с меньшей).
Рассмотрим картину линий магнитного поля постоянного полосового магнита (рис. 88). Из курса физики 8 класса вы знаете, что магнитные линии выходят из северного полюса магнита и входят в южный. Внутри магнита они направлены от южного полюса к северному. Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность.
Вне магнита магнитные линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает. Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на неё поле магнита. Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке.
Таким образом, сила, с которой поле полосового магнита действует на помещённую в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.
Такое поле называется неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.
Ещё одним примером неоднородного магнитного поля может служить поле вокруг прямолинейного проводника с током. На рисунке 89 изображён участок такого проводника, расположенный перпендикулярно плоскости чертежа. Кружочком обозначено сечение проводника. Точка означает, что ток направлен из-за чертежа к нам, как будто мы видим остриё стрелы, указывающей направление тока (ток, направленный от нас за чертёж, обозначают крестиком, как будто мы видим хвостовое оперение стрелы, направленной по току).
Из этого рисунка видно, что магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника.
В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.
На рисунке 90 показано магнитное поле, возникающее внутри соленоида — проволочной цилиндрической катушки с током. Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра (вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита). Из этого рисунка видно, что магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.
Однородным является также поле внутри постоянного полосового магнита в центральной его части (см. рис. 88).
Для изображения магнитного поля пользуются следующим приёмом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертёж, то их изображают крестиками (рис. 91, а), а если из-за чертежа к нам — то точками (рис. 91, б). Как и в случае с током, каждый крестик — это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка — острие стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с направлением магнитных линий).
Вопросы
1. Что является источником магнитного поля?
2. Чем создаётся магнитное поле постоянного магнита?
3. Что такое магнитные линии? Что принимают за их направление в какой-либо её точке?
4. Как располагаются магнитные стрелки в магнитном поле, линии которого прямолинейны; криволинейны?
5.0 чём можно судить по картине линий магнитного поля?
6. Какое магнитное поле — однородное или неоднородное — образуется вокруг полосового магнита; вокруг прямолинейного проводника с током; внутри соленоида, длина которого значительно больше его диаметра?
7. Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в разных точках неоднородного магнитного поля; однородного магнитного поля?
8. Чем отличается расположение магнитных линий в неоднородном и однородном магнитных полях?
Упражнение 31
1. На рисунке 92 изображён участок ВС проводника с током. Вокруг него в одной из плоскостей показаны линии магнитного поля, созданного этим током. Существует ли магнитное поле в точке А?
2. В какой из точек — А, М или N (см. рис. 92) — магнитное поле тока, протекающего по участку ВС проводника, будет действовать на магнитную стрелку с наибольшей силой; с наименьшей силой?
3. На рисунке 93 изображён проволочный виток с током и линии магнитного поля, создаваемого этим током.
а) Есть ли среди указанных на рисунке точек А, В, С и D такие, в которых поле действовало бы на магнитную стрелку с одинаковой по модулю силой? (АС = AD, АЕ = BE.) Если такие точки есть, укажите их.
б) В какой из точек — А, В, С или D — поле действует на магнитную стрелку с наибольшей силой?
в) Можно ли найти такие точки, в которых сила действия поля на магнитную стрелку была бы одинакова как по модулю, так и по направлению? Если да, то сделайте в тетради рисунок и укажите на нём хотя бы две пары таких точек.